# Simple \& Compound Interest Exercise 

## EXERCISE

1. Out of a certain sum, $\frac{1}{3}$ rd is invested at $3 \%, \frac{1}{6}$ th at $6 \%$ and the rest at $8 \%$. If the simple interest for 2 years from all these investments amounts to $\begin{gathered} \\ 600 \\ \text {, find the }\end{gathered}$ original sum.
(a) `4000 (b)`5000
(c) ` 6000 (d) \({ }^{`} 7000\)
2. A sum of money lent out at simple interest amounts to `1008 in 2 years and `1164 in $31 / 2$ years. Find the rate $\%$ p.a.
(a) $13 \%$
(b) $14 \%$
(c) $12 \frac{1}{2} \%$
(d) $15 \%$
3. A sum of money lent out at simple interest amounts to 720 after 2 years and to $` 1,020$ after a further period of 5 years. Find the sum and the rate $\%$.
(a) ${ }^{`} 500,10 \%$
(b) `\(600,10 \%\) (c)` $500,12 \%$
(d) ` $600,12 \%$
4. A sum was put at simple interest at a certain rate for 4 years. Had it been put at $2 \%$ higher rate, it would have fetched `56 more. Find the sum. (a) `500
(b) ${ }^{`} 600$
(c) `700 (d)` 800
5. Simple interest on a certain sum is 16 over 25 of the sum. Find the rate per cent and time, if both are equal.
(a) $8 \%$ and 8 years
(b) $6 \%$ and 6 years
(c) $10 \%$ and 10 years
(d) $12 \%$ and 12 years
6. A father left a will of $\begin{gathered} \\ 68,000\end{gathered}$ to be divided between his two sons aged 10 years and 12 years such that they may get equal amount when each attains the age of 18 years If the money is reckoned at $10 \%$ p.a. Find how much each gets at the time of the will.
(a) ${ }^{`} 30,000, ` 38,000$
(b) ` \(28,000,{ }^{`} 40,000\)
(c) `\(32,000,` 36,000\)
(d) cannot be deteermined.
7. If there are three sum of money $P, Q$ and $R$ so that P is the simple interest of Q and Q is the simple interest of R , rate $\mathrm{r} \%$ and the time are same in each case, then the realtion of $\mathrm{P}, \mathrm{Q}$ and R is given by
(a) $\mathrm{P}^{2}=\mathrm{QR}$
(b) $\mathrm{Q}^{2}=\mathrm{PR}$
(c) $\mathrm{R}^{2}=\mathrm{PQ}$
(d) $\mathrm{PQR}=100$
8. In how many minimum number of complete years, the interest on ${ }^{2} 212.50 \mathrm{P}$ at $3 \%$ per annum will be in exact number of rupees?
(a) 6
(b) 8
(c) 9
(d) 7
9. A milk man borrowed $\begin{gathered} \\ 2,500 \\ \text { from two }\end{gathered}$ money lend For one loan, he paid 5\% p.a. and for the other, he paid $7 \%$ p.a. The total interest paid for two years was `275 . How much did he borrow at \(7 \%\) rate? (a)` 600
(b) `625 (c)` 650
(d) `675
10. What annual instalment will discharge a debt of `4,200 due in 5 years at \(10 \%\) simple interest? (a) `500 per year
(b) ${ }^{`} 600$ per
year

## Simple \& Compound Interest Exercise

(c) `700 per year (d)`800 per year
11. Adam borrowed some money at the rate of $6 \%$ p.a. for the first two years, at the rate of $9 \%$ p.a. for the next three year, and at the rate of $14 \%$ p.a. for the period beyond five years. If he pays a total interest of ` 11,400 at the end of nine years, how much money did he borrow? (a) \({ }^{`} 10,000\)
(b) ${ }^{`} 12,000$
(c) ${ }^{`} 14,000$
(d) ' 16,000
12. A person borrows `5000 for 2 years at \(4 \%\) p.a. simple interest. He immediately lends it to another person at \(6 \frac{1}{4} \%\) p.a. for 2 years. Find his gain in the transaction per year. (a)` 112.50
(b) ' 125
(c) `150 (d)` 167.50
13. A certain amount earns simple interest of $` 1750$ after 7 years. Had the interest been $2 \%$ more, how much more interest would it have earned?
(a) ${ }^{`} 35$
(b) ${ }^{`} 245$
(c) $\begin{aligned} & \\ & 350 \\ & \text { (d) cannot be determined }\end{aligned}$
14. What will be the ratio of simple interest earned by certain amount at the same rate of interest for 6 years and that for 9 years?
(a) $1: 3$
(b) $1: 4$
(c) $2: 3$
(d) Data inadequate
15. Two equal sums of money were invested, one at $4 \%$ and the other at $4.5 \%$. At the end of 7 years, the simple interest received from the latter exceeded to that received from the former by ` 31.50 . Each sum was: (a) \({ }^{`} 1,200\)
(b) `600 (c)` 750
(d) ` 900 16. Nitin borrowed some money at the rate of 6 \% p.a. for the first three years, \(9 \%\) p.a. for the next five years and \(13 \%\) p.a. for the period beyond eight years If the total interest paid by him at the end of eleven years is \({ }^{`} 8160\), how much money did he borrow?
(a) `8000 (b) ' 10,000 (c) ` 12,000
(d) Data inadequate
17. An automobile financier claims to be lending money at simple interest, but he includes the interest every six months for calculating the principal. If he is charging an interest of $10 \%$, the effective rate of interest becomes:
(a) $10 \%$
(b) $10.25 \%$
(c) $10.5 \%$
(d) None of these
18. A lent $\begin{aligned} & \\ & 5000\end{aligned}$ to B for 2 years and `3000 to C for 4 years on simple interest at the same rate of interest and received` 2200 in all from both of them as interest. The rate of interest per annum is:
(a) $5 \%$
(b) $7 \%$
(c) $7 \frac{1}{8} \%$
(d) $10 \%$
19. A sum of 725 is lent in the beginning of a year at a certain rate of interest. After 8 months, a sum of `362.50 more is lent but at the rate twice the former. At the end of the year.` 33.50 is earned as interest from both the loans. What was the original rate of interest?

## Simple \& Compound Interest Exercise

(a) $3.6 \%$
(b) $4.5 \%$
(c) $5 \%$
(d) None of these
20. The difference between the simple interest received from two different sources on Rs. 1500 for 3 years is `13.50 . The difference their rates of interest is: (a) \(0.1 \%\) (b) \(0.2 \%\) (c) \(0.3 \%\) (d) \(0.4 \%\) 21. The rates of simple interest in two banks A and B are in the ratio 5:4. A person wants to deposit his total savings in two banks in such a way that he received equal half-yearly interest from the both. He should deposit the savings in banks A and \(B\) in the ratio. (a) \(2: 5\) (b) \(4: 5\) (c) \(5: 2\) (d) \(5: 4\) 22. The price of a T.V. set worth 20,000 is to paid in 20 instalments of ' 1000 each. If the rate of interest be \(6 \%\) per annum, and the first instalment be paid at the time of purchase, then the value of the last instalment covering the interest as well will be: (a) 1050 (b) \(\square 2050\) (c)` 3000
(d) None of
these
23. Mr. Thomas invested an amount of Rs.13,900 divided in two different schemes A and B at the simple interest rate of $14 \%$ p.a. and $11 \%$ p.a. respectively. If the total amount of simple interest earned in 2 years be Rs.3508, what was the amount invested in scheme B?
(a) $\begin{gathered} \\ 6400\end{gathered}$
(b) ` 6500 (c) \(` 7200\)
(d) ${ }^{`} 7500$
24. An amount of $\begin{gathered} \\ 1 \\ \\ \\ 00,000\end{gathered}$ is invested in two types of shares. The first yields an interest of $9 \%$ p.a. and the second, $11 \%$ p.a. If the total interest at the end of one year is $9 \frac{3}{4} \%$, then the amount invested in each share was:
(a) `52,\(500 ;` 47,500\)
(b) `62,\(500 ;` 37,500\)
(c) `72,\(500 ;` 27,500\)
(d) `82,\(500 ;` 17,500\)
25. David invested certain amount in three different schemes $\mathrm{A}, \mathrm{B}$ and C with the rate of interest $10 \%$ p.a., $12 \%$ p.a. and $15 \%$ p.a. respectively. If the total interest accrued in one year was $\square 3200$ and the amount invested in Scheme C was $150 \%$ of the amount invested in Scheme A and $240 \%$ of the amount invested in Scheme B, what was the amount invested in scheme B?
(a) `5000 (b) ` 6500
(c) `8000 (d) cannot be determined 26. A person invested in all Rs. 2600 at \(4 \%\), \(6 \%\) and \(8 \%\) per annum simple interest. At the end of the year, he got the same interest in all the three cases. The money invested at \(4 \%\) is: (a) ` 200
(b) ` 600 (c) \({ }^{`} 800\)
(d) ` 1200
27. Divide 2379 into 3 parts so that their amounts after 2, 3 and 4 years respectively may be equal, the rate of interest being 5\% per annum at simple interest. The first part is:
(a) 759
(b) 792

## Simple \& Compound Interest Exercise

(c) 818
(d) 828
28. A man invests `3000 at a rate of \(5 \%\) per annum. How much more should he invest at a rate of \(8 \%\), so that he can earn a total of \(6 \%\) per annum? (a)` 1200
(b) ${ }^{`} 1300$
(c) `1500 (d)` 2000
29. Two equal sums of mney are lent at the same time at $8 \%$ and $7 \%$ per annum simple interest. The former is recovered 6 months earlier than and the amount in each case is $\square 2560$. The sum and the time for which the sum of money were lent out, are:
(a) `2500, 3.5 years and 4 years (b) `2000, 3.5 years and 4years
(c) `2000, 4 years and \(5.5 y\) ears (d) ` 3000 , 4 years and $4.5 y$ ears
30. Peter invested an amount of ${ }^{`} 12,000$ at the rate of $10 \%$ p.a. simple interest and another amount at the rate of $20 \%$ p.a. simple interest. The total interest earned at the end of one year on the total amount invested became $14 \%$ p.a. Find the total amount invested?
(a) ${ }^{`} 20,000$
(b) ${ }^{`} 22,000$
(c) `24,000 (d)` 25,000
31. Submit lent some money to Mohit at $5 \%$ per annum simple interest. Mohit lent the entire amount to Birji on the same day at $8 \frac{1}{2} \%$ per annum. In this transaction, after a year, Mohit earned a profit of Rs. 350 . Find the sum of money lent by submit to Mohit.
(a) ${ }^{`} 10,000$
(b) ${ }^{`} 9,000$
(c) ${ }^{`} 10,200$
(d) None of these
32. Rajesh gave `1200 on loan. Some amount he gave at \(4 \%\) per annum simple interest and remaining at \(5 \%\) per annum simple interest. After two years, he got Rs. 110 as interest. Then the amounts given at \(4 \%\) and \(5 \%\) per annum simple interest are, respectively: (a)`500, `700 (b) ` $400, ` 800$
(c) `\(900,` 300\)
(d) ' $1100,{ }^{\prime} 1100$
33. If the difference between S.I. and C.I. for 2 years on a sum of money lent at $5 \%$ is Rs.6, then the sum B.
(a) ${ }^{`} 2200$
(b) ` 2400 (c) \({ }^{`} 2600\)
(d) `2000 34. Zovo got a loan of` 8,000 against his fixed deposits to purchase a scooter. If the rate of interest is $10 \%$ p.a. compounded half yearly, find the amount that he pays after one and half year.
(a) `9000 (b) `9200
(c) `9350 (d) `9500
35. A sum of money placed at compound interest doubles itself in 5 years. Find in how many years it will become 8 times.
(a) 15 years
(b) 20 years
(c) 25 years
(d) 30 years
36. The C.I. on a certain sum of money for the $4^{\text {th }}$ year at $8 \%$ p.a. is `486 . What was the compound interest for the third year on the same sum at the same rate? (a)` 450
(b) `475 (c)` 456
(d) None of
these
37. A sum amounts double in 8 years by simple interest. Then the rate of simple interest p.a. is
(a) $10 \%$
(b) $12.5 \%$
(c) $15 \%$
(d) $20 \%$
38. A man borrowed some money from a private organisation at $5 \%$ simple interest per annum. H lended $50 \%$ of this money to another person at $10 \%$ compound interest per annum and thereby the man made a profit of ${ }^{`} 13,205$ in 4 years. The man borrowed
(a) ` 80,000 (b) \({ }^{`} 1,00,000\)
(c) ${ }^{`} 1,20,000$
(d) ` \(1,50,000\) 39. Two equal sums were borrowed at \(8 \%\) simple interest per annum for 2 years and 3 years respectively. The difference in the interest was Rs.56. The sums borrowed were (a) \({ }^{`} 800\)
(b) `700 (c) Rs. 560 (d) ` 350
40. The difference between C.I.(Compound Interest) and S.I.(Simple Interest) on a sum of ${ }^{`} 4,000$ for 2 years aaaat $5 \%$ p.a. payable yearly is
(a) ${ }^{`} 20$
(b) ${ }^{`} 10$
(c) $` 50$
(d) ` 60

| ANSWER KEY |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 1. (b) | 2. (a) | 3. (b) | 4. (c) | 5. (a) |  |
| 6. (c) | 7. (b) | 8. (b) | 9. (b) | 10. (c) |  |
| 11. (b) | 12. (a) | 13. (d) | 14. (c) | 15. (d) |  |
| 16. (a) | 17. (b) | 18. (d) | 19. (d) | 20. (c) |  |
| 21. (b) | 22. (d) | 23. (a) | 24. (b) | 25. (a) |  |


| $26 .(\mathrm{d})$ | $27 .(\mathrm{d})$ | $28 .(\mathrm{c})$ | $29 .(\mathrm{b})$ | $30 .(\mathrm{a})$ |
| :--- | :--- | :--- | :--- | :--- |
| $31 .(\mathrm{a})$ | $32 .(\mathrm{a})$ | $33 .(\mathrm{b})$ | $34 .(\mathrm{b})$ | $35 .(\mathrm{a})$ |
| $36 .(\mathrm{a})$ | $37 .(\mathrm{b})$ | $38 .(\mathrm{b})$ | $39 .(\mathrm{b})$ | $40 .(\mathrm{b})$ |

## EXERCISE

1. (b) Rest part $=1-\left(\frac{1}{3}+\frac{1}{6}\right)=\frac{1}{2}$

Rate $\%$ per annum on total sum

$$
\begin{aligned}
& =\left(\frac{1}{3} \times 3\right)+\left(\frac{1}{6} \times 6\right)+\left(\frac{1}{2} \times 8\right)=6 \% \\
& \therefore P=\frac{600 \times 100}{6 \times 2}=` 5,000
\end{aligned}
$$

2. (a) S.I. for $11 / 2$ years $=$ ' (1164-1008) $=156$ S.I. for 2 years $=`\left(\frac{156 \times 2 \times 2}{3}\right)=$ `208 \(\therefore\) Principal \(=\) Rs. \((1008-208)=` 800\)
Now, P=800, T=2, S.I. $=208$
$\therefore$ Rate $=\left(\frac{100 \times 208}{800 \times 2}\right) \%=13 \%$
3. (b) S.I. for 5 years $=`(1020-720)=` 300$
S.I. for 2 years $=\frac{\sqrt{0} 300}{5} * 2 \times 2=` 120$
$\therefore$ Principal $=`(720-120)=` 600$
Now, $\mathrm{P}=600, \mathrm{~T}=2$, S.I. $=120$
$\therefore \mathrm{R}=\frac{120 \times 100}{600 \times 2}=10 \%$
4. (c) Difference in S.I. $=\frac{P \times T}{100}\left(\mathrm{R}_{1}-\mathrm{R}_{2}\right)$

$$
\begin{aligned}
& \Rightarrow 56=\frac{P \times 4 \times 2}{100} \quad\left(\therefore \mathrm{R}_{1}-\mathrm{R}_{2}=2\right) \\
& \Rightarrow \mathrm{P}=\frac{56 \times 100}{4 \times 2}={ }^{\prime} 700
\end{aligned}
$$

5. (a) $\frac{16}{25} \mathrm{P}=\frac{P \times R \times R}{100}$

EXAMS DAILY $]$

## Simple \& Compound Interest Exercise

$\Rightarrow \mathrm{R}^{2}=\frac{1600}{25} \Rightarrow \mathrm{R}=\frac{40}{5}=8 \%$
Also, time $=8$ years
6. (c) Let one gets $=` \mathrm{x}$

Then, second gets $=`(68,000-\mathrm{x})$
Given: $\mathrm{A}_{1}=\mathrm{A}_{2}$
$\mathrm{X}+\frac{x \times 10 \times 8}{100}=(68000-\mathrm{x}) \quad+$ $\frac{(68000-x) \times 10 \times 6}{100}$
$\Rightarrow \mathrm{X}[100+80]=(68,000-\mathrm{x})[100+60]$
$\Rightarrow \quad \frac{180 x}{160}={ }^{`} 68,000-\mathrm{x}$
$\Rightarrow 34 \mathrm{x}=68000 \times 16$
$\Rightarrow \quad \mathrm{x}=` 32,000$
$\therefore$ second gets $=36,000$

$$
\begin{aligned}
& \frac{s_{1}}{s_{2}}=\frac{\left(\frac{1}{100+r_{1} t_{1}}\right)}{\left(\frac{1}{100+r_{2} t_{2}}\right)}=\frac{\left(\frac{1}{180}\right)}{\left(\frac{1}{160}\right)}=\frac{8}{9} \\
& S 1=8 / 17 \times 68000=32000 \\
& S 2=68000-32000=36000
\end{aligned}
$$

7. (b) $\mathrm{P}=\frac{Q \times r \times t}{100}$ and $\mathrm{Q}=\frac{R \times r \times t}{100}$
$\Rightarrow \frac{P}{Q}=\frac{Q}{R}=\frac{r \times t}{100}$
$\therefore \mathrm{Q}^{2}=\mathrm{PR}$.
8. (b) Interest for one year $=` 212.50 \times$ $\frac{3}{100} \times 1$

$$
=\frac{.51}{8}
$$

Thus in 8 years the interest is `51 9. (b) Let he borrowed at \(5 \%=\mathrm{x}\) \(\therefore\) He borrowed at \(7 \%={ }^{`}(2500-\mathrm{x})\)
Now $\mathrm{I}_{1}+\mathrm{I}_{2}=275$
$\frac{x \times 5 \times 2}{100}+\frac{(2500-x) \times 7 \times 2}{100}=275$
$\Rightarrow 10 \mathrm{x}+14(2500-\mathrm{x})=27500$
$\Rightarrow 4 x=35000-27500=7500$
$\Rightarrow \quad \mathrm{X}={ }^{`} 1875$
Sum borrowed at $7 \%$ rate $=2500-1875={ }^{`}$ 625
10. (c) Shotcut method:

If borrowed amount be ${ }^{`} \mathrm{M}$ and it is paid in equal instalements, then
$\mathrm{M}=\mathrm{na}+\frac{r a}{100 \times Y} \times \frac{n(n-1)}{2}$
Where $\mathrm{Y}=$ no. of instalments per annum

$$
\mathrm{a}=\text { annual instalment }
$$

Here, $M=4200, y=1, r=10, n=5, a=$ ?
$4200=5 \mathrm{a}+\frac{10 a}{100} \times \frac{5(5-1)}{2}$
$\Rightarrow 4200=\mathrm{a}[5+1] \Rightarrow 6 \mathrm{a}=4200$
$\Rightarrow \quad \mathrm{a}={ }^{`} 700$
11. (b) Let the sum borrowed be $x$. Then,
$\left(\frac{\mathrm{x} \times 6 \times 2}{100}\right)+\left(\frac{\mathrm{x} \times 9 \times 3}{100}\right)+\left(\frac{\mathrm{x} \times 14 \times 4}{100}\right)=$ 11400
$\Rightarrow\left(\frac{3 x}{25}+\frac{27 x}{100}+\frac{14 x}{25}\right)=11400$
$\Rightarrow \frac{95 x}{100}=11400$
$\Rightarrow \quad x=\left(\frac{11400 \times 100}{95}\right)=12000$.
Hence, sum borrowed $=` 12,000$.
12. (a) Gain in 2 years

$$
\begin{aligned}
& =\left[\left(5000 \times \frac{25}{4} \times \frac{2}{100}\right)-\left(\frac{5000 \times 4 \times 2}{100}\right)\right] \\
& =`(625-400)=` 225 . \\
& \therefore \text { Gain in } 1 \text { year }=`\left(\frac{225}{2}\right)=` 112.50
\end{aligned}
$$

13. (d) We need to know the S.I., Principal and time to find the rate. Since the principal is not given, so data is in adequate.
14. (c) Let the principal be $P$ and rate of interest be R\%.

EXAMS DAILY

## Simple \& Compound Interest Exercise

$\therefore$ Required ratio $=\left[\frac{\left(\frac{P \times R \times 6}{100}\right)}{\left(\frac{P \times R \times 9}{100}\right)}\right]=\frac{6 P R}{9 P R}=\frac{6}{9}$
$=2: 3$.
15. (d) Difference of S.I. $=` \sqrt{31.50}$

Let each sum be Rs.x. Then

$$
\begin{aligned}
& \frac{x \times 4 \frac{1}{2} \times 7}{100}-\frac{x \times 4 \times 7}{100}=31.50 \\
& \text { Or } \frac{7 x}{100} \times \frac{1}{2}=\frac{63}{2} \\
& \text { Or } \mathrm{x}=900
\end{aligned}
$$

16. (a) Let the sum be 'x. Then,

$$
\begin{aligned}
& \quad\left(\frac{x \times 6 \times 3}{100}\right)+\left(\frac{x \times 9 \times 5}{100}\right)+\left(\frac{x \times 13 \times 3}{100}\right) \\
& =8160 \\
& \Rightarrow \quad 18 \mathrm{x}+45 \mathrm{x}+39 \mathrm{x}=(8160 \times 100) \\
& \Rightarrow \quad 102 \mathrm{x}=816000 \\
& \Rightarrow \quad \mathrm{X}=8000
\end{aligned}
$$

17. (b) Let the sum be ` 100 . Then, S.I. for first 6 months \(=`\left(\frac{100 \times 10 \times 1}{100 \times 2}\right)=\) Rs.
S.I. for last 6 months $=`\left(\frac{105 \times 10 \times 1}{100 \times 2}\right)=$ `5.25.

So, amount at the end of 1 year $=$ $`(100+5+5.25)=` 110.25$.
$\therefore$ Effective rate $={ }^{`}(110.25-100)=$ $10.25 \%$
18. (d) Let the rate be $\mathrm{R} \%$ p.a. Then,
$\left(\frac{5000 \times R \times 2}{100}\right)+\left(\frac{3000 \times R \times 4}{100}\right)=2200$
$\Rightarrow \quad 100 \mathrm{R}+120 \mathrm{R}=2200$
$\Rightarrow \mathrm{R}=\left(\frac{2200}{220}\right)=10$.
19. (d) Let the original rate be $\mathrm{R} \%$. Then, new rate $=(2 R) \%$

$$
\begin{aligned}
\therefore & \left(\frac{725 \times R \times 1}{100}\right)+\left(\frac{362.50 \times 2 R \times 1}{100 \times 3}\right)=33.50 \\
\Rightarrow & (2175+725) \mathrm{R}=33.50 \times 100 \times 3= \\
& 10050 \\
\Rightarrow & \mathrm{R}=\frac{10050}{2900}=3.46 \%
\end{aligned}
$$

20. (c) $\left(\frac{1500 \times R_{1} \times 3}{100}\right)+\left(\frac{1500 \times R_{2} \times 3}{100}\right)=$ 13.50
$\Rightarrow 4500\left(\mathrm{R}_{1}-\mathrm{R}_{2}\right)=1350$
$\Rightarrow \quad \mathrm{R}_{1}-\mathrm{R}_{2}=\frac{1350}{4500}=0.3 \%$
21. (b) Let the savings be $X$ and $Y$ and the ratesof simple interest be $5 x$ and $4 x$ respectively.
Then, $\mathrm{X} \times 5 x \times \frac{1}{2} \times \frac{1}{100}=\mathrm{Y} \times 4 x \times \frac{1}{2} \times$
$\frac{1}{100} \quad$ or $\quad \frac{X}{Y}=\frac{4}{5}$,
i.e., $X: Y=4: 5$
22. (d) Money paid in cash $=` 1000$.

Balance payment $=`(20000-1000)$
$=` 19000$
23. (a) Let the sum invested in scheme $A$ be Rs. $x$ and that in scheme $B$ be $\square$ (13900-
x )
Then, $\left(\frac{x \times 14 \times 2}{100}\right)+\left(\frac{(13900-x) \times 11 \times 2}{100}\right)$
$=3508$
$\Rightarrow \quad 28 \mathrm{x}-22 \mathrm{x}=350800-(13900 \times 22)$
$\Rightarrow \quad 6 x=45000$
$\Rightarrow \quad x=7500$.
So, sum invested in scheme B

$$
\begin{aligned}
& =`(13900-7500) \\
& =` 6400 .
\end{aligned}
$$

24. (b) Let the sum invested at $9 \%$ be ' $X$ and that invested at $11 \%$ be Rs. $(100000-x)$. Then,
$\left(\frac{x \times 9 \times 1}{100}\right)+\left(\frac{(100000-x) \times 11 \times 2}{100}\right)$

EXAMS DAILY

## Simple \& Compound Interest

 Exercise$$
\begin{aligned}
& \Rightarrow \quad\left(100000 \times \frac{39}{4} \times \frac{1}{100}\right) \\
& \Rightarrow \quad \frac{9 x+1100000-11 x}{100}=\frac{39000}{4}=9750 \\
& \Rightarrow \quad 2 \mathrm{x}=(1100000-975000)=125000 \\
& \Rightarrow \quad \mathrm{X}=62500 .
\end{aligned}
$$

$\therefore$ sum invested at $9 \%={ }^{`} 62500$.
Sum invested at $11 \%=$ (100000-62500)

$$
=` 37500 .
$$

## Alternatively:

$\mathrm{P}_{1}=\mathrm{P} \frac{\left(\mathrm{r}-\mathrm{r}_{2}\right)}{\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)} \& \mathrm{P}_{2}=\mathrm{P} \frac{\left(\mathrm{r}-\mathrm{r}_{1}\right)}{\left(\mathrm{r}_{2}-\mathrm{r}_{1}\right)}$
$P_{1}=1,00,000\left[\frac{9 \frac{3}{4}-11}{9-11}\right], \mathrm{P} 2=\left[\frac{9 \frac{3}{4}-9}{11-9}\right]$
$\mathrm{P}_{1}=62500, \mathrm{P}_{2}=37500$
25. (a) Let $x, y$ and $z$ be the amounts invented in schemes $\mathrm{A}, \mathrm{B}$ and C respectively. Then,
$\left(\frac{x \times 10 \times 1}{100}\right)+\left(\frac{y \times 12 \times 1}{100}\right)+\left(\frac{z \times 15 \times 1}{100}\right)=$ 3200
$\Rightarrow \quad 10 x+12 y+15 z=320000$
Now, $z=240 \%$ of $y=\frac{12}{5} y$ $\qquad$
And, $\mathrm{z}=150 \%$ of $\mathrm{x}=\frac{3}{2} \mathrm{x}$

$$
\Rightarrow \quad x=\frac{2}{3} \mathrm{z}=\left(\frac{2}{3} \times \frac{12}{5}\right)=\frac{8}{5} \mathrm{y}
$$

........(iii)

From (i),(ii) and (iii), we have:
$16 y+12 y+36 y=320000$
$\Rightarrow 64-\mathrm{y}=320000$
$y=5000$
$\Rightarrow \quad$ Sum invested in scheme $B=` 5000$.
26. (d) Let the parts be $x, y$ and $[2600-(x+y)]$. Then,
$\frac{\mathrm{x} \times 4 \times 1}{100}=\frac{\mathrm{y} \times 6 \times 1}{100}=\frac{[2600-(\mathrm{x}+\mathrm{y})] \times 8 \times 1}{100}$
$\frac{\mathrm{y}}{\mathrm{x}}=\frac{4}{6}=\frac{2}{3}$ or $\mathrm{y}=\frac{2}{3} \mathrm{x}$.
So, $\frac{x \times 4 \times 1}{100}=\frac{\left(2600-\frac{5}{3} x\right) \times 8}{100}$

$$
\begin{array}{ll}
\Rightarrow & 4 \mathrm{x}=\frac{(7800-5 x) \times 8}{3} \\
\Rightarrow & 52 \mathrm{x}=(7800 \times 8) \\
\Rightarrow & \mathrm{x}=\left(\frac{7800 \times 8}{52}\right)=1200 .
\end{array}
$$

$\therefore$ Money invested at $4 \%={ }^{`} 1200$.
27. (d) Let the parts be $\mathrm{x}, \mathrm{y}$ and $[2379-(\mathrm{x}+\mathrm{y})]$.

$$
\begin{aligned}
& \mathrm{X}+\left(x \times 2 \times \frac{5}{100}\right)=\mathrm{Y}+\left(y \times 3 \times \frac{5}{100}\right) \\
& =\mathrm{Z}+\left(z \times 4 \times \frac{5}{100}\right) \\
& \Rightarrow \quad \frac{11 x}{10}=\frac{23 y}{20}=\frac{6 z}{5}=\mathrm{k} \\
& \Rightarrow \quad \mathrm{x}=\frac{10 k}{11}, \mathrm{y}=\frac{20 k}{23}, \mathrm{z}=\frac{5 k}{6}
\end{aligned}
$$

But $\mathrm{x}+\mathrm{y}+\mathrm{z}=2373$.
$\Rightarrow \quad \frac{10 k}{11}+\frac{20 k}{23}+\frac{5 k}{6}=2379$
$\Rightarrow \quad 1380 \mathrm{k}+1320 \mathrm{k}+1256 \mathrm{k}$

$$
=2376 \times 11 \times 23 \times 6
$$

$$
\Rightarrow \quad \mathrm{k}=\frac{2379 \times 11 \times 23 \times 6}{3965}=\frac{3 \times 11 \times 23 \times 6}{5}
$$

$$
\therefore \mathrm{x}=\left(\frac{10}{11} \times \frac{3 \times 11 \times 23 \times 6}{5}\right)=828 .
$$

Hence, the first part is ${ }^{`} 828$.
28. (c)
$3000(1+0.05)+\mathrm{x}(1+0.08)=(3000+\mathrm{x})(1+0.0$
6)

Or $3150+1.08 \mathrm{x}=3180+1.06 \mathrm{x}$
Or $0.02 \mathrm{x}=30$ or $\mathrm{x}=\frac{30}{0.02}=1500$
29. (c) Let the sum be ` x . \(\therefore \quad{ }^{`} \mathrm{X}\) is lent at $8 \%$ for t years and ${ }^{\mathrm{x}} \mathrm{x}$ is also lent at $7 \%$ for $\left(t+\frac{1}{2}\right)$ years
$\Rightarrow \quad \frac{x \times t \times 8}{100}+=2560$
and $\frac{x \times(2 t+1) \times 7}{100}+\mathrm{x}=2500$
Solving (1) and (2),

$$
\Rightarrow \quad X=` 2,000, t=3.5 \text { years }
$$

30. (a) Let the second amount be Rs. x. Then,

EXAMS DAILY
$\frac{12,000 \times 10 \times 1}{100}+\frac{x \times 20 \times 1}{100}=\frac{(12000+x) \times 14 \times 1}{100}$
$\Rightarrow \quad 120000+20 x=(12000+x) 14$
$\Rightarrow \quad 6 \mathrm{x}=168000-120000$
$\Rightarrow \quad X=` 8000$
$\therefore$ Total investment $=12,000+8000$

$$
=` 20,000
$$

31. (a) We have,

$$
\begin{aligned}
& \left(8 \frac{1}{2}-5\right) \% \text { of } x=` 350 \\
& \Rightarrow \quad 100 \% \text { of } x=\frac{350}{3.5} \times 100=` 10,000
\end{aligned}
$$

32. (a) Let the amount of the loss at $4 \%$ per annum be `

Amount given at 5\% per annum $={ }^{`}(1200-$ x)

Now, $\frac{x \times 4 \times 2}{100}+\frac{(1200-x) \times 5 \times 2}{100}=110$
$\Rightarrow \quad \mathrm{X}=` 500$
And, $(1200-\mathrm{x})=1200-500=` 700$
33. (b) Difference $=\frac{P R^{2}}{10000}$
$\Rightarrow 6=\frac{P \times 5 \times 5}{10000}$
$\Rightarrow \quad 6 \times 400={ }^{`} 2400$.
34. (b) Here, $\mathrm{n}=3$ for interest is reckoned half-yearly.
$\mathrm{A}=8,000\left(1+\frac{10}{2 \times 100}\right)^{3}$
$\mathrm{A}=8,000\left(\frac{21}{20}\right)^{3}=` .9261=` 9200$
35. (a) $\mathrm{P}\left(1+\frac{R}{100}\right)^{5}=2 \mathrm{P}$
$\Rightarrow \quad\left(1+\frac{R}{100}\right)^{5}=2$
Let $\mathrm{P}\left(1+\frac{R}{100}\right)^{n}=8 \mathrm{P}$
$\Rightarrow \quad\left(1+\frac{R}{100}\right)^{n}=\left(1+\frac{R}{100}\right)^{15}$

Simple \& Compound Interest

$$
\begin{array}{ll}
\Rightarrow & 2^{3}=\left\{\left(1+\frac{R}{100}\right)^{5}\right\}^{3}[\text { By }(\mathrm{i})] \\
\Rightarrow & \mathrm{n}=15 \text { years }
\end{array}
$$

36. (a) If ' $x$ ' be the interest of third year, then $108 \%$ of $x=486$
$\therefore \mathrm{x}=486 \times \frac{100}{108}=450$
37. (b) Let p be the principal amount and R be rate of interest.
$2 \mathrm{P}=\mathrm{P}+\frac{P \times R \times 8}{100}$
$\mathrm{R}=\frac{100}{8}=12.5 \%$
38. (b) Let principal be represented by P.

Ist Case:
S.I. $=\frac{P \times R \times T}{100}=\frac{P \times 8 \times 3}{100}$

Ind Case:
S.I. $=\frac{P \times R \times T}{100}=\frac{P \times 8 \times 3}{100}$

According to question
$\frac{P \times 8 \times 3}{100}-\frac{P \times 8 \times 2}{100}=56$
$\frac{P \times 8}{100}=56$
$\Rightarrow \quad \mathrm{P}=\frac{56 \times 100}{8}=700$
39. (b) Required difference $=\frac{P R^{2}}{(100)^{2}}$
$\Rightarrow \quad \frac{4000 \times 5 \times 5}{100 \times 100}={ }^{`} 10$

## GK Study Materials PDF Download

All subject Study Materials PDF Download

2018 Current Affairs Download - PDF Download

Whatsapp Group Click Here

Telegram Channel Click Here
Join Us on FB
Follow US on English - Examsdaily
Twitter - Examsdaily

