PERCENTAGE

The word "percent" is derived from the latin words "per centum", which means "per hundred".
A percentage is a fraction with denominator hundred, It is denoted by the symbol \%.
Numerator of the fraction is called the rate per cent.

VALUE OF PERCENTAGE:

Value of percentage always depends on the quantity to which it refers:
Consider the statement, " 65% of the students in this class are boys". From the context, it is understood that boys from 65% of the total number of students in the class. To know the value of 65%, the value of the total number of student should be known. If the total number of student is 200 , then,
The number of boys $=\frac{200 \times 65}{100}=130$;
It can also be written as $(200) \times(0.65)=130$.
Note that the expressions $6 \%, 63 \%, 72 \%, 155 \%$ etc. Do not have any value intrinsic to themselves. Their values depend on the quantities to which they refer.
To express the fraction equivalent to \%:
Express the fraction with the denominator 100, then the numerator is the answer.

Example 1:

Express the fraction $\frac{11}{12}$ into the per cent.

Solution:

$$
\frac{11}{12}=\frac{\frac{11}{12} \times 100}{100}=\frac{91 \frac{2}{3}}{100}=91 \frac{2}{3} \%
$$

To express \% equivalent to fraction:

$$
\mathrm{a} \%=\frac{a}{100}
$$

Example 2:

Express $45 \frac{5}{6} \%$ into fraction.
Solution:

$$
45 \frac{5}{6} \%=\frac{45 \frac{5}{6}}{100}=\frac{275}{6 \times 100}=\frac{11}{24}
$$

Fraction Equivalents of \%

$$
\begin{array}{ll}
1 \%=\frac{1}{100} & 33 \frac{1}{3} \%=\frac{1}{3} \\
2 \%=\frac{1}{50} & 40 \%=\frac{2}{5} \\
4 \%=\frac{1}{25} & 50 \%=\frac{1}{2} \\
5 \%=\frac{1}{20} & 66 \frac{2}{3} \%=\frac{2}{3} \\
6 \frac{1}{4} \%=\frac{1}{16} & 60 \%=\frac{3}{5} \\
10 \%=\frac{1}{10} & 75 \%=\frac{3}{4} \\
11 \frac{1}{3} \%=\frac{17}{150} & 80 \%=\frac{4}{5} \\
12 \frac{1}{2} \%=\frac{1}{8} & 96 \%=\frac{24}{25} \\
16 \%=\frac{4}{25} & 100 \%=1 \\
16 \frac{2}{3} \%=\frac{1}{6} & 115 \%=\frac{23}{20} \\
20 \%=\frac{1}{5} & 133 \frac{1}{3} \%=\frac{4}{3} \\
25 \%=\frac{1}{4} & \\
\hline
\end{array}
$$

$$
\text { Increase } \%=\frac{\text { Increas value }}{\text { Original value }} \times 100
$$

Example 3:

Rent of the house is increased from 7000 to ${ }^{`} 7700$. Express the increase in price as a percentage of the original rent.

Solution:

Increase value $=$ Rs $7700-$ Rs $7000=$ Rs 700

Increase $\%=\frac{\text { Increas value }}{\text { Original value }} \times 100=$ $\frac{700}{7000} \times 100=10$
\therefore Percentage rise $=10 \%$
*

Example 4:

The cost of a bike last year was Rs 19000. Its cost this year is Rs 17000 .
Find the per cent decrease in its cost.

$$
\text { Decrease } \%=\frac{\text { Decreas value }}{\text { Original value }} \times 100
$$

$\%$ decrease $=\frac{19000-17000}{19000} \times 100$
$=\frac{2000}{19000} \times 100=10.5 \%$.
\therefore Percentage decrease $=10.5 \%$.
$\dot{*} \quad$ If A is $\mathrm{x} \%$ if C and B is $\mathrm{y} \%$ of C , then
A is $\frac{x}{y} \times 100 \%$ of B.

Example 5:

A positive number is divided by 5 instead of being multiplied by 5 . By what per cent is the result of the required correct value?

Solution:

Let the number be 1 , then the correct answer $=5$
The incorrect answer that was obtained $=\frac{1}{5}$.
\therefore The required $\%=\frac{1}{5 \times 5} \times 100=4 \%$

* If two numbers are respectively $x \%$ and $\mathrm{y} \%$ more than a third number, then the first number is $\left(\frac{100+x}{100+y} \times 100\right) \%$ of the second and the second is $\left(\frac{100+y}{100+x} \times\right.$ 100% of the first.
* If two numbers are respectively $\mathrm{x} \%$ and $\mathrm{y} \%$ less than a third number, then the
first number if $\left(\frac{100-x}{100-y} \times 100\right) \%$ of the second and the second is $\left(\frac{100-y}{100-x} \times\right.$ 100) \% of the first.
* $\quad \mathrm{x} \%$ of a quantity is taken by the first, $\mathrm{y} \%$ of the remaining is taken by the second and $\mathrm{z} \%$ of the remaining is taken by third person. Now, if A is left in the fund, then the initial amount
$=\frac{\mathrm{A} \times 100 \times 100 \times 100}{(100-\mathrm{x})(100-\mathrm{y})(100-\mathrm{z})}$ in the beginning.
* $\quad x \%$ of a quantity is added. Again, $y \%$ of the increased quantity is added. Again $\mathrm{z} \%$ of the increased quantity is added. Now it becomes A , then the initial amount

$$
=\frac{A \times 100 \times 100 \times 100}{(100+x)(100+y)(100+z)}
$$

Example 6:

3.5% income is taken as tax and 12.5% of the remaining is saved. This leaves Rs. 4,053 to spend. What is the income?

Solution:

By direct method,
Income $=\frac{4053 \times 100 \times 100}{(100-3.5)(100-12.5)}=$ Rs
4800.

* If the price of a commodity increases by $\mathrm{r} \%$, then reduction in consumption, so as not to increase the expenditure is $\left(\frac{r}{100+r} \times 100\right) \%$.
* If the price of a commodity decreases by $\mathrm{r} \%$, then the increase in consumption, so as not to decrease the expenditure is $\left(\frac{r}{100-r} \times 100\right) \%$.

Example 7:

If the price of coal be raised by 20%, then find by how much a householder must
reduce his consumption of this commodity so as not to increase his expenditure?

Solution:

Reduction in consumption $=\left(\frac{20}{100+20} \times\right.$ 100\%

$$
=\left(\frac{20}{100+20} \times 100\right) \%=16.67 \%
$$

POPULATION FORMULA

* If the original population of a town is P , and the annual increase is $\mathrm{r} \%$, then the population after n years is $\mathrm{P}(1+$ $r 100 n$ and population before n years $=$ $\frac{P}{\left(1+\frac{r}{100}\right)^{n}}$
* If the annual decrease be $r \%$, then the population after n years is $\mathrm{P}\left(1-\frac{r}{100}\right)^{n}$ and population before n years $=$ $\frac{P}{\left(1+\frac{r}{100}\right)^{n}}$

Example 8:

The population of a certain town increased at a certain rate per cent annum. Now it is 456976. Four years ago, it was 390625. What will it be 2 years hence?

Solution:
Suppose the population increases at r \% per annum. Then, $390625\left(1+\frac{r}{100}\right)^{4}=$ 456976
$\therefore\left(1+\frac{r}{100}\right)^{2}=\sqrt{\frac{456976}{390625}}=\frac{676}{625}$
Population 2 years hence $=456976$ $\left(1+\frac{r}{100}\right)^{2}$

$$
=456976 \times \frac{676}{625}=494265
$$ approximately.

Example 9:

The population of a city increase at the rate of 4% per annum. There is an additional annual increase of 1% in the population due to the influx of job seekers. Find percentage increase in the population after 2 years.

Solution:

The net annual increase $=5 \%$
Let the initial population be 100 .

* Then, population after 2 years $=$ $100 \times 1.05 \times 1.05=110.25$

Therefore, $\%$ increase in population $=$ $(110.25-100)=10.25 \%$
If a number A is increased successively by $\mathrm{x} \%$ followed by $\mathrm{y} \%$ and then $\mathrm{z} \%$, then the final value of A will be

$$
\begin{gathered}
A\left(1+\frac{x}{100}\right)\left(1+\frac{y}{100}\right)(1 \\
\left.+\frac{z}{100}\right)
\end{gathered}
$$

In case a given value decreases by an percentage then we will use negative sign before that.

* First Increase and then decrease:

If the value is first increased by $x \%$ and then decreased by $y \%$ then there is $\left(x-y-\frac{x y}{100}\right) \%$ increase or decrease, according to the +ve or -ve sign respectively.
If the value is first increased by $x \%$ and then decreased by $\mathrm{x} \%$ then there is only decrease which is equal to $\left(\frac{x^{2}}{100}\right)$.

Example 10:

A number is increased by 10% and then it is decreased by 10%. Find the net increase or decrease per cent.

Percentage

Study Material

Solution:

$\%$ change $=\frac{10 \times 10}{100}=1 \%$
i.e. 1% decrease.

* Average percentage rate of change over a period.
$=\frac{(\text { New Value }- \text { Old Value })}{\text { Old Value }} \times \frac{100}{n} \%$ where
$\mathrm{n}=$ period.
* The percentage error =
$\frac{\text { The Error }}{\text { True Value }} \times 100 \%$

SUCCESSIVE INCREASE OR DECREASE

* In the value is increased successively by $\mathrm{x} \%$ and $\mathrm{y} \%$ then the final increase is given by

$$
\left(x+y+\frac{x y}{100}\right) \%
$$

* In the value is decreased successively by $\mathrm{x} \%$ and $\mathrm{y} \%$ then the final decrease is given by
$\left(-x-y-\frac{x y}{100}\right) \%$

Example 11:

The price of a car is decreased by 10% and 20% in two successive years. What per cent of price of a car is decreased after two years?
Solution:
Put $\mathrm{x}=-10$ and $\mathrm{y}=-20$, then
$-10-20+\frac{(-10)(-20)}{100}=-28 \%$
\therefore The price of the car decreases by 28%.

STUDENT AND MARKS

* The percentage of passing marks in an examination is $\mathrm{x} \%$. If a candidate who
scores y marks fails by z marks, then the maximum marks $\mathrm{M}=\frac{100(y+z)}{x}$
* A candidate scoring $\mathrm{x} \%$ in an examination fails by 'a' marks, while another candidate who scores y\% marks gets ' b ' marks more then the minimum required passing marks. Then the maximum marks $\mathrm{M}=\frac{100(a+b)}{y-x}$
* In an examination $\mathrm{x} \%$ and $\mathrm{y} \%$ students respectively fail in two different subjects while $\mathrm{z} \%$ students fail in both subjects then the \% age of student who pass in both the subjects will be $\{100-(\mathrm{x}+\mathrm{y}-$ z) \}\%

Example 12:

Vishal requires 40% to pass. If he gets 185 marks, falls short by 15 marks, what was the maximum he could have got?

Solution:

If Vishal has 15 marks more, he could have scored 40% marks.

Now, 15 marks more then 185 is $185+15=200$

Let the maximum marks be x , then 40% of $x=200$
$\Rightarrow \frac{40}{100} \times \mathrm{x}=200 \Rightarrow \mathrm{x}=\frac{200 \times 100}{40}=500$
Thus, maximum marks $=500$
Alternate method:
Maximum marks $=\frac{100(185+15)}{40}=$ $\frac{100 \times 200}{40}=500$

Example 13:

A candidate scores 15% and fails by 30 marks, while another candidate who scores 40% marks, gets 20 marks more then the minimum required marks to pass
the pass the examination. Find the maximum marks of the examination.

Solution:

By short cut method:
Maximum marks $=\frac{100(30+20)}{40-15}=200$

2-DIMENSIONAL FIGURE AND AREA

* If the sides of a triangle, square, rectangle, rhombus or radius of a circle are increased by $a \%$, its area is increased by $\frac{a(a+200)}{100} \%$
* If the sides of a triangle, square, rectangle, rhombus or radius of a circle are decreased by a \%
Then its area is decreased by $\frac{a(200-a)}{100} \%$.

Example 14:

If the radius of a circle is increased by 10%, what is the percentage increase in its area?

Solution:

Let R be the radius of circle.
Area of Circle, $\mathrm{A}=\pi R^{2}$
Now, radius is increased by 10%
New radius, $\mathrm{R}^{\prime}=\mathrm{R}+10 \%$ of $\mathrm{R}=1.1 \mathrm{R}$
New Area, $\mathrm{A}^{\prime}=\pi(1.1 R)^{2}=1.21 \pi R^{2}$
$\%$ increase in area $=$
$\frac{1.21 \pi R^{2}-\pi R^{2}}{\pi R^{2}} \times 100=21 \%$

Shortcut Method:

Radius is increases by 10%.
So, Area is increased by $\frac{10(10+200)}{100}=$ 21%

* If the both sides of rectangle are changed by $x \%$ and $y \%$ respectively, then $\%$ effect on area $=\mathrm{x}+\mathrm{y}+\frac{x y}{100}(+/-$ according to increase or decrease)

Example 15:

If the length and width of a rectangular garden were each increased by 20%, then what would be the per cent increase in the area of the garden?

Solution:
By direct formula
$\%$ increase in area $=\frac{20(20+200)}{100}=$ 44\%

* If A's income is $\mathrm{r} \%$ more than that of B, then B 's income is less than that of A by $\left(\frac{r}{100+r} \times 100\right) \%$
* If A's income is $\mathrm{r} \%$ less than that of B , then B's income is more than that of A by $\left(\frac{r}{100-r} \times 100\right) \%$

Example 16:

If A's salary is 50% more than B's, then by what percent B's salary is less than A's salary?

Solution:

Let B's salary be Rs x
Then, A's salary $=x+50 \%$ of $x=1.5 x$
B's salary is less than A's salary by
$\left(\frac{1.5 x-x}{1.5 x} \times 100\right) \%=\frac{100}{3}=33.33 \%$
Shortcut method,
B's salary is less than A's salary by
$\left(\frac{50}{100+50} \times 100\right) \%$
$=\frac{50}{150} \times 100 \%=33.33 \%$

Example 17:

Ravi's weight is 25% that of Meena's and 40% that of Tara's. What percentage of Tara's weight is Meena's weight.

Solution:

Let Meena's weight be xkg and Tara's weight be y kg. Then Ravi's weight $=25 \% \quad$ of Meena's weight

$$
\begin{equation*}
=\frac{25}{100} \times x \tag{i}
\end{equation*}
$$

Also, Ravi's weight $=40 \%$ of Tara's weight
$=\frac{40}{100} \times y$
From (i) and (ii), we get
$\frac{25}{100} \times x=\frac{40}{100} \times y$
$\Rightarrow 25 \mathrm{x}=40 \mathrm{y}$
$\Rightarrow 5 \mathrm{x}=8 \mathrm{y} \Rightarrow \mathrm{x}=\frac{8}{5} \mathrm{y}$
Meena's weight as the percentage of Tara's weight

$$
\begin{aligned}
& =\frac{x}{y} \times 100=\frac{\frac{8}{5} y}{y} \times 100 \\
& =\frac{8}{5} \times 100=160
\end{aligned}
$$

Hence, Meena's weight is 160% of Tara's weight.

Example 18:

The monthly salaries of A and B together amount to $\begin{aligned} & \\ & 50,000 \text {. A spends }\end{aligned}$ 80% of his salary. If then find the salary and B spends 70% of his now their saving are the same, salaries of A and B.

Solution:

Let A's salary by x , then B's salary (50,000-x)
A spends 80% of his salary and saves 20\%

B spends 70% of his salary and saves 30\%
Given that

$$
20 \% \text { of } x=30 \% \text { of }(50,000-x)
$$

$\frac{20}{100} \times x=\frac{30}{100} \times(50,000-x)$
$\frac{50 \mathrm{x}}{100}=\frac{30 \times 50,000}{100}$
$\Rightarrow \mathrm{x}=\frac{30 \times 50,000 \times 100}{100 \times 50}=30,000$
A's salary Rs 30,000
B's salary $=$ Rs $50,000-$ Rs $30,000=$ Rs20,000

GK Study Materials PDF Download

All subject Study Materials PDF Download

2018 Current Affairs Download - PDF Download

Whatsapp Group Click Here Join Us on FB E: English Examsdaily

Follow US on
. Twitter - Examsdaily

