VECTOR CALCULUS

1. $\nabla=\frac{\partial}{\partial \mathrm{x}} \overline{\mathrm{I}}+\frac{\partial}{\partial \mathrm{y}} \overline{\mathrm{j}}+\frac{\partial}{\partial \mathrm{z}} \overline{\mathrm{k}}$
2. If ϕ is a scalar point function then,

$$
\begin{aligned}
\nabla \phi & =\left(\frac{\partial}{\partial \mathrm{x}} \overline{\mathrm{i}}+\frac{\partial}{\partial \mathrm{y}} \overline{\mathrm{j}}+\frac{\partial}{\partial \mathrm{z}} \overline{\mathrm{k}}\right) \phi \\
& =\frac{\partial \phi}{\partial \mathrm{x}} \overline{\mathrm{i}}+\frac{\partial \phi}{\partial \mathrm{y}} \overline{\mathrm{j}}+\frac{\partial \phi}{\partial \mathrm{z}} \overline{\mathrm{k}}
\end{aligned}
$$

$\nabla \phi$ is called the gradient of $\phi(\phi$ is a scalar function) and is denoted by grad ϕ
i. e., $\operatorname{grad} \phi=\nabla \phi$
3. i) $\nabla(\mathrm{f} \pm \mathrm{g})=\nabla \mathrm{f} \pm \nabla \mathrm{g}$
ii) $\nabla(\mathrm{fg})=\mathrm{f} \nabla \mathrm{g}+\mathrm{g} \nabla \mathrm{f}$
iii) $\nabla \mathrm{C}=0$ where C is a constant
iv) If $\vec{r}=x \vec{\imath}+y \vec{j}+z \vec{k}$ and $|\vec{r}|=r$ then,

$$
\nabla r=\frac{\bar{r}}{r}=\hat{r}
$$

v) $\nabla \mathrm{r}^{\mathrm{n}}=\mathrm{nr}^{\mathrm{n}-2 \vec{r}}$
vi) $\nabla \mathrm{f}(\mathrm{r})=\mathrm{f}^{\prime}(\mathrm{r})\left(\frac{\bar{r}}{r}\right)$
vii) $\nabla(\log \mathrm{r})=\frac{\overline{\mathrm{r}}}{\mathrm{r}^{2}}$
viii) $\nabla \mathrm{f}(\mathrm{r}) \times \overline{\mathrm{r}}=0$
4. The directional derivative of a scalar point function ϕ at the point (x, y, z) in the direction of a given vector \vec{a} is $\nabla \phi \cdot \frac{\bar{a}}{|\bar{a}|}$
5. The unit normal to the surface $\phi=0$ at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right.$, Z_{1}) is

$$
\overline{\mathrm{n}}=\frac{\nabla \phi\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)}{\left|\nabla \phi\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)\right|}
$$

ie., $\overline{\mathrm{n}}=\frac{\nabla \phi}{|\nabla \phi|}$
6. The directional derivative at a point P is maximum in the direction of the normal at P . The maximum directional derivative at $\mathrm{P}=$ $|\nabla \phi|$.
7. Angle between the surfaces $\phi_{1}=0$ and $\phi_{2}=0$ at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ is $\cos \theta=\frac{\nabla \phi_{1} \cdot \nabla \phi_{2}}{\left|\nabla \phi_{1}\right|\left|\nabla \phi_{2}\right|}$
8. Equation of tangent plane and normal plane for the surface $\phi=0$ at a.
Equation of the tangent plane is $(\bar{r}-\bar{a}) \cdot \nabla \phi=$ 0
Equation of the normal plane is $(\bar{r}-\bar{a}) \times \nabla \phi$ $=0$
9. Let $\overline{\mathrm{F}}$ be a vector valued function. Then, $\operatorname{div} \overline{\mathrm{F}}=\nabla$. $\overline{\mathrm{F}}$
$\operatorname{curl} \overline{\mathrm{F}}=\nabla \times \overline{\mathrm{F}}$
10. If $\overline{\mathrm{F}}=\mathrm{F}_{1} \overline{\mathrm{I}}+\mathrm{F}_{2} \overline{\mathrm{j}}+\mathrm{F}_{3} \overline{\mathrm{k}}$ Then, $\operatorname{div} \overline{\mathrm{F}}$

$$
\begin{gathered}
=\left(\frac{\partial}{\partial \mathrm{x}} \overline{\mathrm{i}}+\frac{\partial}{\partial \mathrm{y}} \overline{\mathrm{j}}+\frac{\partial}{\partial \mathrm{z}} \overline{\mathrm{k}}\right) \cdot\left(F_{1} \bar{\imath}+F_{2} \bar{\jmath}+F_{3} \bar{k}\right) \\
=\frac{\partial \mathrm{F}_{1}}{\partial \mathrm{x}}+\frac{\partial \mathrm{F}_{2}}{\partial \mathrm{y}}+\frac{\partial \mathrm{F}_{3}}{\partial \mathrm{z}}
\end{gathered}
$$

$\operatorname{Curl} \overline{\mathrm{F}}=\nabla \times \overline{\mathrm{F}}$

$$
=\left|\begin{array}{ccc}
\bar{\imath} & \bar{\jmath} & \bar{k} \\
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{y}} & \frac{\partial}{\partial \mathrm{z}} \\
F_{1} & F_{2} & F_{3}
\end{array}\right|
$$

11. $\operatorname{div} \overline{\mathrm{F}}$ is a scalar.
curl $\overline{\mathrm{F}}$ is a vector quantity.
12. A vector F is said to be solenoidal if $\nabla . \overline{\mathrm{F}}=0$ i. e., $\operatorname{div} \overline{\mathrm{F}}=0$
13. A vector $\overline{\mathrm{F}}$ is said to be irrotational if $\operatorname{curl} \overline{\mathrm{F}}=$ 0
i.e., $\nabla \times \overline{\mathrm{F}}=0$
14. i) $\operatorname{div}\left(\frac{\bar{r}}{r}\right)=\frac{2}{r}$
ii) $\operatorname{div}\left(\mathrm{r}^{\mathrm{n}} \overline{\mathrm{r}}\right)=(\mathrm{n}+3) \mathrm{r}^{\mathrm{n}}$
iii) $\operatorname{div}\left(\mathrm{r}^{\mathrm{n}}(\overline{\mathrm{a}} \times \overline{\mathrm{r}})\right)=0$

Where $\overline{\mathrm{a}}$ is a constant.
iv) $\nabla\left(\frac{f(r)}{r} \bar{r}\right)=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \mathrm{f}(\mathrm{r})\right)$
15. i) $\nabla \times \bar{r}=0$
ii) $\nabla \times(\mathrm{f}(\mathrm{r}) \overline{\mathrm{r}})=0$
iii) $\nabla \times\left(\mathrm{r}^{\mathrm{n}} \overline{\mathrm{r}}\right)=0$

Follow us on FB for exam Updates: ExamsDaily
16. If ϕ is a scalar function and $\overline{\mathrm{F}}$ is a vector function, then,
i) $\nabla . \nabla \phi=\nabla^{2} \phi$
ii) $\nabla \times(\nabla \phi)=0$
i.e., curl $\operatorname{grad} \phi=0$
iii) $\nabla .(\nabla \times \bar{F})=0$
iv) curl curl curl curl $\overline{\mathrm{F}}=\nabla^{4} \overline{\mathrm{~F}}$
v) $\nabla \times\left(\nabla r^{\mathrm{n}}\right)=0$
vi) ∇. $\left(\nabla \mathrm{r}^{\mathrm{n}}\right)=\mathrm{n}(\mathrm{n}+1) \mathrm{r}^{\mathrm{n}-2}$
vii) ∇. $(\phi \overline{\mathrm{F}})=(\nabla \phi) \cdot \overline{\mathrm{F}}+\phi(\nabla \cdot \overline{\mathrm{F}})$
viii) $\nabla \times(\phi \overline{\mathrm{F}})=(\nabla \phi) \times \overline{\mathrm{F}}+\phi(\nabla \times \overline{\mathrm{F}})$
ix) $\nabla \cdot(\overline{\mathrm{F}} \times \overline{\mathrm{G}})=\overline{\mathrm{G}} .(\nabla \times \overline{\mathrm{F}})-\overline{\mathrm{F}} .(\nabla \times \overline{\mathrm{G}})$
i.e., $\operatorname{div}(\overline{\mathrm{F}} \times \overline{\mathrm{G}})=\overline{\mathrm{G}}$. $\operatorname{curl} \overline{\mathrm{F}}-\overline{\mathrm{F}} . \operatorname{curl} \overline{\mathrm{G}}$
$\nabla \times(\nabla \times \overline{\mathrm{F}})=\nabla(\nabla . \overline{\mathrm{F}})-\nabla^{2} \overline{\mathrm{~F}}$
i.e., curl curl $\overline{\mathrm{F}}=\nabla \operatorname{div} \overline{\mathrm{F}}-\nabla^{2} \overline{\mathrm{~F}}$

Gauss Divergence Theorem:

Let $\overline{\mathrm{F}}$ be a vector point function, finite and differentiable in the region R bounded by a closed surface S, then the surface integral of the normal component of $\overline{\mathrm{F}}$ taken over S is equal to the integral of divergence of $\overline{\mathrm{F}}$ taken over V.
i.e., \iint_{S} F. $\hat{n} d s=\iiint_{V} \nabla . \overline{\mathrm{F}} \mathrm{dv}$

1. Deductions from Gauss divergence theorem:
i) $\quad \iiint_{V}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d v=\iint_{S}(\phi \nabla \psi-$ $\psi \nabla \phi$. nds where, ϕ and ψ are scalar point functions.
ii) $\iint_{V} \nabla \phi d v=\iint_{S} \hat{n} \cdot \phi d s$
iii) $\iiint_{V} \nabla \times \mathrm{Fdv}=\iint \hat{\mathrm{n}} . \times \overline{\mathrm{F}} \mathrm{ds}$
2. Cartesian form of Gauss divergence theorem:
Let $\hat{\mathrm{n}}=\cos \alpha \overline{\mathrm{i}}+\cos \beta \overline{\mathrm{j}}+\cos \gamma \overline{\mathrm{k}}$ where, α, β and γ are the angles which \hat{n} makes with $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes respectively.
Let, $\overline{\mathrm{F}}=\mathrm{F}_{1} \mathrm{i}+\mathrm{F}_{2} \mathrm{j}+\mathrm{F}_{3} \mathrm{k}$
Then,
Download Study Materials on www.examsdaily.in

$$
\begin{aligned}
& \iiint \int_{V}\left(\phi \nabla^{2} \boldsymbol{\Psi}-\psi \nabla^{2} \boldsymbol{\phi}\right) \mathrm{d} v \\
& \mathrm{dx} \mathrm{dy} \mathrm{dz} \\
& =\iint_{S}\left(F_{1} \cos \alpha+F_{2} \cos \beta+F_{3} \cos \gamma\right) d s \\
& \quad=\iint_{S} F_{1} d y d z+F_{2} d z d x+F_{3} d x d y
\end{aligned}
$$

3. If S is a closed surface then
$\iint_{S} \vec{r} \cdot \hat{n} d s=3 V$
$\iint_{S} \operatorname{curl} \vec{F} \cdot \hat{n} d s=0$
$\iint_{S} \nabla r^{2} \cdot \hat{n} d s=6 V$
$\iint_{S} \int_{\mathrm{r} \cdot \hat{n}}^{\mathrm{r}^{2}} \mathrm{ds}=\iiint_{V} \frac{\mathrm{dv}}{\mathrm{r}^{2}}$

Stokes Theorem:

Let S be an open surface bounded by a closed curve C. Let $\overline{\mathrm{F}}$ be a vector point function defined on the surface S and \hat{n} is a unit outward normal at any point P on S .
Then, $\int_{C} F . d \bar{r}=\iint_{S}(\nabla \times \bar{F}) . \bar{n} d s$

Deductions from Stokes Theorem:

i) $\int_{C} \overline{\mathrm{r}} \cdot \mathrm{d} \overline{\mathrm{r}}=0$
ii) $\int_{C} \phi \nabla \psi \cdot d r=-\int_{C} \psi \nabla \phi \cdot d r$
iii) $\int_{C} \phi \nabla \phi d r=0$

Green's theorem in plane:

Let R be a closed curve C . Let M and N be continuous functions of x and y having continuous partial derivatives in R . Then,

$$
\oint_{C} \operatorname{Mdx}+\mathrm{Ndy}=\iint_{R}\left(\frac{\partial N}{\partial \mathrm{x}}-\frac{\partial \mathrm{M}}{\partial \mathrm{y}}\right) \mathrm{dx} \mathrm{dy}
$$

Where C is traversed in the anti-clock wise direction.
Green's theorem in plane (vector form)
Let $\overline{\mathrm{F}}=\mathrm{Mi}+\mathrm{N} \overline{\mathrm{j}}$
$\overline{\mathrm{r}}=\mathrm{x} \overline{\mathrm{I}}+\mathrm{y} \overline{\mathrm{J}}$
$d \bar{r}=d x \bar{i}+d y \bar{j}$
Then, Green's theorem in vector form is

$$
\oint_{C} \overline{\mathrm{~F}} \cdot \mathrm{~d} \overline{\mathrm{r}}=\iint_{\mathrm{R}}(\nabla \times \overline{\mathrm{F}}) \cdot \mathrm{KdR}
$$

Result:

Area bounded by any closed curve C is given by

$$
\frac{1}{2} \oint_{C}(x d y-y d x)
$$

Join Us on FB
English - Examsdaily Tamil - Examsdaily Tamil

Whatsapp Group
English - Click Here
Tamil - Click Here

