Previous Year Questions & Detailed Solutions

T

1.	The rate of	of convergen	nce in the C	Gauss-Seidal	
	method i	.s	as fast as	in Gauss	
	Jacobi'sm	ethod			
	1) thrice	2) half	-times		7.
	3) twice	4) thre	e by two tir	nes	
2.	In applie	cation of	Simpsons	$\frac{1}{3}$ rd rule,	
	theinterva	l h for	closer ap	proximation	
	should be				
	1) small		2) odd and	l large	
	3) large		4) even an	d small	
3.	Which of	the follow	ving is a s	tep by step	
	method?				8.
	1) Taylor'	s method			
	2) Picards	method			
	3) Adams	Bashforth 1	nethod		
	4) Eulers	method			
4.	The interp	olation poly	ynomial fro	m the data	
	Х	0	1	3	
	f()	5	4	0	
	I(X)	3	4	0	
	1) $x^2 - 2x$	+ 5	2) $x^2 + 2x$	+5	
	3) $2x^2 - 2$	x + 5	4) $2x^2 - 5x^2$	x +5	9.
5.	The value	of the inte	egration \int_{a}^{a}	$^{+2h}$ f(x)dxis	
	approxima	ately equal t	to		
	1) $\frac{h}{2}[f(a) + 3]$	3f(a+h)+f(a	+2h)]		
	2) $\frac{h}{3}[f(a) + 4]$	4f(a+h)+f(a	+2h)]		
	$3)\frac{h}{2}[f(a)+2]$	2f(a+h)+f(a	+2h)]		
	4) $\frac{h}{2}[f(a) + 4]$	4f(a+h)+f(a	+2h)]		
6	The finite	difference	approvima	tion for $\frac{d^2y}{d^2y}$	10.
0.	at $\mathbf{x} = \mathbf{x}_0$ i	s	аррюхниа	$\frac{1}{dx^2}$	
	$1)\frac{1}{1}(y(x_0))$	$-h)-2y(x_0)+$	$y(x_0+h)$]		
	$2)\frac{1}{12}[v(x_0)]$	-h)+2v(x ₀)+	$-y(x_0+h)$]		
	′ h² Ľ ^j (**0	/ J(0)			
					1

3)
$$\frac{1}{h^2}[y(x_0-h)-y(x_0)+y(x_0+h)]$$

4) $\frac{1}{h^2}[y(x_0-h)+y(x_0)+y(x_0+h)]$

4) $\frac{1}{h^2}[y(x_0-h)+y(x_0)+y(x_0+h)]$ For the following data 4 Х 0 2 6 Y 3 7 -1 11 the straight line y=mx+c by the method of least square is 1) y=-2x-l 2) y=x-l 3) y=l-2x 4) y=2x-1The velocity v (km/min) of a train which starts from rest, is given at fixed intervals of time t(min) as follows: t 2 4 6 8 10 12 14 16 18 20 10 18 25 29 32 20 11 5 2 0 v The approximate distance covered by Simpson's $\frac{1}{3}$ rule is 1) 306.3 2) 309.3 3) 310.3 4) 307.3 Find the cubic polynomial by Newton's forward difference which takes the following: Х 0 1 2 3 f(x)1 2 1 10 then f(4) is 1) 40 2) 41 3) 39 4) 42 The first derivative $\frac{dy}{dx}$ at x=0 for the given data Х 0 1 2 3

f(x)	2	1	2	5

	1) 2	2) -2
	3) -1	4) 1
11.	Error in Simpson's $\frac{1}{3}$	rule is of the order
	1) $-h^2$	2) h^3
	3) h ⁴	$(4)\frac{2h^3}{2}$
12.	If α , β and γ are the ro	bots of $x^3 + px^2 + qx + 1$
	= 0, then the equa	tion whose roots are
	$\frac{-1}{\alpha}, \frac{-1}{\beta}, \frac{-1}{\gamma}$ is	
	1) $x^3 + qx^2 - px - l = 0$	
	2) $x^{3}+qx^{3}-px+1=0$	
	3) x^{3} - qx^{2} + px - $l=0$	
	4) x^{3} - qx^{2} +px+l=0	
13.	In Jacobi's iteration n	nethod to get the
	$(r+1)^{\text{th}}$ iterates, we use	e the
	1) values of the r th iter	ates
	2) values of the $(r-1)^{t}$	ⁿ iterates
	3) values of the $(r+1)$	th iterates
	4) latest available valu	les
14.	If h is the length of	the intervals, then the
	error in the trapezoida	al rule is of order $2h^2$
	1) n^{3}	2) fi (1) h^4
15	5) II If F is the translati	4) II
15.	central difference one	rator δ is
	1) $E^{1/2} + E^{-1/2}$	2) $E^{1/2} - E^{-1/2}$
	$3)\frac{1}{2}(E^{1/2}+E^{-1/2})$	4) $-\frac{1}{2}$ (E ^{1/2} + E ^{-1/2})
16.	If $\Delta f(x) = f(x + h) - f(x)$	x), E f(x) = f(x + h) and
	$\delta f(x) = \left(x + \frac{h}{2}\right) - f\left(x + \frac{h}{2}\right)$	$-\frac{h}{2}$ then $\Delta \nabla$ is
	1) δ^2	$2)$ δ
	3) $\delta^{1/2}$	4) $\delta^{1/2} + \delta^{-1/2}$
17.	Expression for $\left(\frac{d^2y}{dx^2}\right)$	$\left(\frac{y}{2}\right)_{x=x_{0}}$ using Newton's
	backward interpolatio	n
	1) $\frac{1}{h^2} \Big[\nabla^2 f_n + \nabla^3 f_n + \frac{1}{2} \Big]$	$\left[\frac{1}{12}\nabla^4 f_n + \cdots\right]$
	2) $\frac{1}{h^2} [\nabla^2 - \Delta^2 - \Delta^4 -$	\cdots]f _n
	11	

 $3)\frac{1}{h^{2}} [\Delta^{2} + \Delta^{3} + \Delta^{4} + \cdots] f_{n}$ $4) \frac{1}{h^{2}} [\Delta^{2} - \Delta^{3} - \frac{11}{12}\Delta^{4} - \cdots] f_{n}$ By Taylor's series method solu

- 18. By Taylor's series method solution of $y'=x^2 + y^2$; y(0) = 1 is 1) $y=l+x - x^2$ 2) $y = 1-x+x^2$ 3) $y=x+x^2+x^3$ 4) $y=l+x+x^2+\frac{4}{3}x^3$
- 19. Error in the Trapezoidal rule is of the order 1) -h 2) h^3 3) h^4 4) h^2
- 20. A river is 80 ft wide, the depth d in feet at a distance x ft. from one bank is given by the following table:

Х	0	10	20	30	40	50	60	70	80
У	0	4	7	9	12	15	14	8	3

Approximately the area of cross section by Simpson's 1/3 rule is

1) 712 sq.ft.	2) 680 sq.ft.
3) 710 sq.ft.	4) 610 sq.ft.

21. The first derivative $\frac{dy}{dx}$ at x= 4 for the data.

ax					
Х	0	1	2	3	4
f(x)	1	-2	-3	-2	1
1) -4			2) 4		
3) 16			4) –16		

22. If x_0 and x_1 are two points, $f(x_0)$ and $f(x_1)$ are of opposite signs, then the root x_2 by regular falsi method is equal to

$$1) \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)} \qquad 2) \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)} \\3) \frac{x_1 f(x_0) - x_0 f(x_1)}{f(x_1) - f(x_0)} \qquad 4) \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_0) - f(x_1)}$$

23. The Newton-Raphson iteration scheme to find an approximate real root of the equation f(x) = 0 is

1)
$$x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$$
 2) $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Download Study Materials on www.examsdaily.in

2

Follow us on FB for exam Updates: ExamsDaily

Numerical Methods

	3) $x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$ 4) $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	30
24.	Power method is used to find	
	1) all eigen values only	
	2) all eigen vectors only	
	3) all eigen values and eigen vectors	
	4) numerically largest eigen value and the	31
	corresponding eigen vector	
25.	Lagrangean interpolation polynomial which	
	passes through the points (0, 1), (1, 2), (3,	
	10) is	
	1) $x^2 + 1$ 2) $x^2 - 1$	32
	3) $x^{3}+1$ 4) $x^{3}-1$	
26.	$\frac{d^2y}{dx^2}$ is approximately equal to	
	1) $\frac{y_{i+1}-y_i-1}{2h}$ 2) $\frac{y_{i+1}+y_i-1}{2h}$	33
	$3)\frac{y_{i-1}-2y_i+y_{i+1}}{h^2} \qquad 4)\frac{y_{i-1}+2y_i+y_{i+1}}{h^2}$	
27.	The scheme	
	$\int_{a}^{a+2h} f(x) dx = \frac{h}{3} [f(a) + 4f(a+h) + f(a+2h)]$	34
	is called	
	1) Trapezoidal rule	
	2) Simpson's 1/3 rule	
	3) Simpson's 3/8 rule	
	4) Weddle's rule	
28.	The Lagrange's interpolation polynomial	
	curve passing through the points $(0, 1) (1, 0)$	
	and (3, 10) is	
	1) $x^2 - 2x + 1$ 2) $-4x^2 + 3x + 1$	
20	3) $2x^2 - 3x + 1$ 4) $x^2 - x + 1$	35
29.	which of the following formulas is a	
	particular case of Runge-Kutta formula of	
	1) Taylar series formula	
	2) Picard's formula	- 36
	3) Fuler's modified formula	
	4) Milne's predictor formula	
	, maie s prodotor formatu	

EXAMS DAILY

30.	What is the highest	degree of a polynomial
	whose definite	integration using
	Simpson's $\frac{1}{2}$ rule gives	the exact value?
	1) 1	2) 2
	3) 3	2) 2 4) 4
31.	The global error ari	sing in using Runge -
	Kutta method of for	urth order to solve an
	ordinary differential	equation is of
	1) $0(h^2)$	2) $0(h^3)$
	$3) 0(h^4)$	4) $0(h^5)$
32.	Simpson's one-thid r	rule integration is exact
	for all polynomial of	degree not exceeding
	1) 2	2) 3
	3) 4	4) 5
33.	With usual notations	, the value of $(1+\Delta)$ (1-
	∇) is	x
	1) 0	2) 2
	3) 1	4) 4
34.	The modified Newto	on-Raphson formula of
	finding the root of the	e equation $f(x)=0$ is
	1) $x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}$	
	$f(x_n)$	
	2) $\mathbf{x}_{n+1} = \mathbf{x}_n - \left\{ \frac{\mathbf{f}(\mathbf{x}_n)}{\mathbf{f}(\mathbf{x}_n)} \right\}$	$\left\{\begin{array}{c} f(x_n)\\ \frac{)-f^n(x_n)f(x_n)}{2f'(x_n)}\end{array}\right\}$
	3) $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	
	4) $x_{n+1} = x_n + \left[\frac{1}{f^{(x_n)}}\right]$	$\frac{f'(x_n)}{\frac{f''(x_n)f(x_n)}{2f'(x_n)}}$
35.	The value of $\int_0^1 \frac{dx}{1+x^2}$	Trapezoidal rule with
	h = 0.2 is	
	1) 0.687322	2) 0.877323
	3) 0.727333	4) 0.783732
36.	Simpson's one-third	rule of integration is
	exact for all polyr	nomial of degree not

exceeding	
1) 2	2) 3
3) 4	4) 5

Download Study Materials on www.examsdaily.in

37. Which of the following formula is a particular case of Runge - Kutta formula of the second order?

- 1) Taylor series formula
- 2) Picard's formula

EXAMS DAILY

- 3) Euler's modified formula
- 4) Milne's predictor formula
- 38. The Newton Raphson method of finding the root of the equation f(x)=0 is by using the formula

1)
$$x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}$$

2) $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
3) $x_{n+1} = x_n + \frac{f'(x_n)}{f(x_n)}$
4) $x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$

- 39. The value of $\int_0^2 \frac{dx}{1+x}$ by Trapezoidal Ruletaking n=2 is 1) 0.645 2) 0.641 3) 0.583 4) 0.621
- 40. Trapezoidal rule for the evaluation of the integral $\int_{a}^{b} f(x) dx$ requires the Interval to be divided into
 - 1) only an even number of intervals
 - 2) only an odd number of intervals
 - 3) any number of intervals
 - 4) a minimum of ten intervals
- 41. If $\int_0^{0.6} f(x) dx k[f(0) + 4f(0.3)+f(0.6)]$ then the value of k when Simpson's rule is applied is

1) 0.1	2) 0.2
3) 0.3	4) 0.4

42. The Newton - Raphson formula to find an approximate value of \sqrt{a} is

1)
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

2) $x_{n+1} = \frac{1}{2} \left(x_n - \frac{a}{x_n} \right)$

3)
$$x_{n+1} = \left(x_n + \frac{a}{x_n}\right)$$

4) $x_{n+1} = x_n - \frac{a}{x_n}$

- 43. The iteration formula given by Newton-Raphson method to find to root of the equation $x \sin x + \cos x = 0$ is
 - $1)x_{n+1} = x_n \frac{x_n \sin x_n + \cos x_n}{x_n \cos x_n}$ $2)x_{n+1} = x_n - \frac{x_n \sin x_n + \cos x_n}{x_n \sin x_n + \cos x_n}$ $3)x_{n+1} = x_n - \frac{x_n \sin x_n + \cos x_n}{x_n \cos x_n + 2\sin x_n}$ $4)x_{n+1} = x_n - x_n \cos x_n + 2\sin x_n$

- 45. Given that f(1) = 1, f(1.5) = 2.875, f(2) = 7, f(2.5) = 14.125 and f(3) = 25, the value of $\int_{1}^{3} f(x) dx$ obtained by Simpson's $\frac{1}{3}$ rule is 1) 17.50 3) 18.25 2) 18.00 4) 19.125
- 46. A root of x^{3} 4x 9 = 0 using bisection method in two stages is
 - 1) 2.752) 0.53613) 0.79694) 0.7123
- 47. The lagrange's interpolation polynomial curve passing through the points (0, 1) (1, 0) and (3, 10) is 1) $x^2 - 2x + 1$ 2) $-4x^2 + 3x + 1$
- 3) 2x²-3x +1
 4) x²-x+1
 48. What is the highest degree polynomial whose definite integration using Simpson's ¹/₁ -rule gives the exact value?

3	υ	
1) 1		2) 2
3) 3		4) 4

- 49. Milne's predictor value of y(0, 4) given thaty'= y- $\frac{2x}{y}$, y(0) = 1 y'(0.1)=0.9. y'(0.2) = 0.8, y'(0.3) =0.7 is 1) $\frac{23}{15}$ 2) $\frac{33}{25}$ 3) $\frac{36}{25}$ 4) $\frac{59}{50}$
- 50. The recurrence formula for finding the reciprocal of the nth root of M, by Newton's method is

1)
$$x_{k+1} = \frac{[(n-1)x_k^n + M]}{nx_k^{n-1}}$$

2) $x_{k+1} = \frac{x_k[n+1 - Mx_k^n]}{n}$
3) $x_{k+1} = \frac{x_k[n-1 + Mx_k^n]}{n}$
4) $x_{k+1} = \frac{1}{n} \left(\frac{1}{x_k} + Mx_k\right)$

51. The value of $\int_0^1 (1 + x^2)^{-1}$ by simpson's one-third rule with two strips is

$$\begin{array}{cccc}
1) \frac{31}{60} & 2) \frac{47}{30} \\
3) \frac{31}{40} & 4) \frac{47}{60}
\end{array}$$

- 52. Which of the following formulas is a particular case of Runge Kutta formula of second order?
 - 1) Taylor series formula
 - 2) Picard's formula
 - 3) Euler's modified formula
 - 4) Milne's predictor formula

DETAILED SOLUTIONS

1. (3)

The rate of convergence of Gauss - Seidel method is roughly twice that of Gauss - Jacobi.

2. (4)

In application of Simpsons $\frac{1}{3}$ rd rule, the intervalh for closer approximation should be even and small.

3. (4)

Numerical Methods

Euler's method is a step by step method. 4. (1)Consider $f(x) = x^2 - 2x + 5$ then $f(0) = 0^2 - 2(0) + 5 = 5$ $f(1) = 1^2 - 2(1) + 5 = 4$ $f(3) = 3^2 - 2(3) + 5 = 8$ \therefore f(x) = x²-2x+5 is the required polynomial. 5. (2) $\int_{a}^{a+2h} f(x) dx = \frac{h}{3} [f(a) + 4f(a+h) + f(a+2h)]$ 6. $\frac{d^2y}{dx^2}(x = x_0) = \frac{f_1 - 2f_0 + f_{-1}}{h_2}$ $\frac{1}{h_2} \left[y(x_0 - h) - 2y(x_0) + y(x_0 + h) \right]$ 7. (4)х 0 2 4 6 7 3 y -1 11 Consider y = 2x-1 $x = 0 \implies y = 2(0) - 1 = -1$ $x = 2 \implies y=2(2)-l = 3$ $x = 4 \implies y=2(4)-l = 7$ $x = 6 \implies y = 2(6) - 1 = 11$ \therefore y=2x-l is the required straight line. 8. (*) $\int y dx = \frac{h}{3}[(y_0 + y_n) + 4 (y + y_3 + ... + y_n) + 2 (y_2$ $+y_4+...y_{n-2})]$ $= \frac{2}{3}[(10+0)+4(18+29+20+5)+2(25+32) +$ 11+2)] = 2929. (2) $f(x) = y_0 + p\Delta f(x_0) + \frac{p(p-1)}{2!}\Delta^2 f(x_0)$ $+\frac{p(p-1)(p-2)}{3!}\Delta^{3}f(x_{0})$ where $p = \frac{x - x_0}{h}$ $\Delta f(x_0) = 1$ $\Delta^2 f(x_0) = -2$

Download Study Materials on www.examsdaily.in

5

$$\Delta^{3} f(x_{0}) = 12$$

$$p = x$$

$$f(x) = 1 + x + \frac{x(x-1)}{2!} (-2)$$

$$+ \frac{x(x-1)(x-2)(12)}{3!}$$

$$= 1 + x - x (x - 1) + 2x(x-1) (x-2)$$

$$\therefore f(4) = 1 + 4 - 4 \times 3 + 2 \times 4 \times 3 \times 2$$

$$= 5 - 12 + 48$$

$$= 41$$

10.

(2)				
Х	f(x)	Δy	$\Delta^2 y$	$\Delta^3 y$
0	2			
		$-1(\Delta y_0)$		
1	1		$2(\Delta^2 y_0)$	
		1		$0 \left(\Delta^3 y_0 \right)$
2	2		2	
		3		
3	5			

First derivative by Newton's forward difference formula

$$y = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \cdots \right]$$

= $\frac{1}{1} \left[-1 - \frac{1}{2} (2) + \frac{1}{3} (0) \right]$
= -1-1=-2

11. (3)

12.

Error in Simpson's $\frac{1}{3}$ rule is of order h⁴ (3)

Results:

Let $a_1, a_2, ..., a_n$ be the roots of the equation $x^n+p_1x^{n-1}+p_2x^{n-2}+...p_n=0$ than the roots of $x^n-p_1x^{n-1}+p_2x^{n-2}-...(-1)^n P_n = 0$ are $-a_1, -a_2, -a_n$ Given $\alpha, \beta, \gamma \text{ are root of } x^3 + px^2 + qx + 1 = 0$ $x^3 + px^2 + qx + 1$ $\Rightarrow \frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma} \text{ are roots of}$ $\left(\frac{1}{x}\right)^3 + p\left(\frac{1}{x}\right)^2 + q\left(\frac{1}{x}\right) + 1 = 0$ $\Rightarrow x^3 + qx^2 + px + 1 = 0$ $\therefore \frac{-1}{\alpha}, \frac{-1}{\beta}, \frac{-1}{\gamma} \text{ are roots of } x^3 - qx^2 + px - 1 = 0$ (1)

13.

For the system of equations $a_1x + b_1y + c_1z = d_1$ $a_2x + b_2y+c_2z = d_2$ $a_3x + b_3y+c_3z = d_3$ Then the $(r+1)^{\text{th}}$ iteration in Jacobi's method is

$$x_{r+1} = \frac{1}{a_1} (d_1 - b_1 y_r - c_1 z_r)$$

$$y_{r+1} = \frac{1}{b_1} (d_2 - a_2 x_r - c_2 z_r)$$

$$z_{r+1} = \frac{1}{c_3} (d_3 - a_3 x_r - b_3 y_r)$$

To find $(r+1)^{th}$ iteration we use r iterations.

14. (2)

Error in the trapezoidal rule is of the order h^2 .

15. (2)

$$\delta f(x) = (E^{1/2} - E^{-1/2}) f(x)$$

16. (1)

(1)

$$\delta = E^{\frac{1}{2}} - E^{-1/2} e$$

$$\Delta = E - 1; \Delta = 1 - E^{-1}$$
where $E = f(x+h)$

$$E^{-1} = f(x-h)$$

$$E^{1/2} = f(x+h/2); E^{-1/2} = f(x-h/2)$$

$$\Delta \nabla = (E - 1) (1 - E^{-1})$$

$$= E - 1 - 1 + E^{-1}$$

$$= E + E^{-1} - 2 \qquad \dots (1)$$

$$d\delta^{2} = (E^{\frac{1}{2}} - E^{-\frac{1}{2}})2$$

$$= E - 2E^{\frac{1}{2}} E^{-1/2} + E^{-1}$$

$$= E^{-2} + E^{-1} \qquad \dots (2)$$

6

Download Study Materials on www.examsdaily.in

Follow us on FB for exam Updates: <u>ExamsDaily</u>

(1) = (2)

$$\therefore \Delta \nabla = \delta^{2}$$

17. (4)
Standard formula

$$\frac{\left(\frac{d^{2}y}{dx^{2}}\right)_{x=x_{n}}}{\frac{1}{h^{2}}\left[\Delta^{2} - \Delta^{3} + \frac{11}{12}\Delta^{4} - \cdots\right]f_{n}}$$
18. (4)
Taylor's series
 $y = y_{0} + \frac{h}{1!}y_{0}' + \frac{h^{2}}{2!}y_{0}'' + \frac{h^{3}}{3!}y_{0}''' + \cdots$
Given y(0) =1
 $\Rightarrow y_{0} = 1; x_{0} = 0$
 $y' = x^{2} + y^{2}$ (Given)
 $y_{0}' = 0 + 1 = 1$
 $y'' = 2x + 2yy'$
 $y_{0}'' = 2(0) + 2.1.1$
 $= 2$
 $y''' = 2 + 2(yy'' + (y')2)$
 $= 2 + 2(1.2 + 1^{2})$
 $= 2 + 2(2 + 1)$
 $= 8$
putting h - x then
 $y = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} 2 + \frac{x^{3}}{3!} 8$
 $= 1 + x + x^{2} + \frac{4}{3}x^{3}$
19. (4)Error in the Trapezoidal rule is of the order h².
20. (3)
Simpson's $\frac{1}{2}$ rule
 $= \int_{x_{0}}^{x_{0} + nh} f(x) dx$
 $= \frac{h}{3}[y_{0} + 4(y_{1} + y_{3} + \cdots) + 2(y_{2} + y_{4} + \cdots + y_{n})$

 $= \frac{h}{3} [y_0 + y_n + 4(\text{sum of odd ordinates})]$ +2sum of even ordinates)] ∴Cross Section Area

$$= \frac{10}{3} [(0+3+4(4+9+15+8)+2(7+12+14)]]$$

= $\frac{10}{3} [3+144+66]$
= 710 sq.ft.

21.

(2)

(-)	6()	D ¹ (G 1	TT1 1	D 4
х	y=f(x)	First	Second	Third	Fourth
		differ-	differ-	differ-	differ-
		ence	ence	ence	ence
0	1				
		-3			
1	-2		2		
		-1		0	
2	-3		2		
		1			0
3	-2			0	
			2		
		3			
4	1				
	•	$\nabla v_0 =$	= $3 \cdot \nabla^2 v_0$	= 2	•

 $\nabla^{3}y_{0} = \nabla^{4}y_{0} = \dots = 0$ Newtons formula for Backward difference $f'(x) = \frac{1}{h} [\nabla y_{0} + \frac{1}{2} \nabla^{2} y_{0} + \frac{1}{3} \nabla^{3} y_{0} \dots]$

$$= \frac{1}{1} \left[3 + \frac{2}{2} \right]$$

= 4

22. (2)

By regular - falsi method the root is given by

$$\frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)}$$

23. (2)

The Newton - Rapson Iteration scheme to find an approximate real root of the equation f(x)=0 is

Download Study Materials on www.examsdaily.in

24. (4)

> Power method is used to determine numerically largest eigen value and the corresponding eigen vector of a matrix A.

26

(1)

Let
$$x_0 = 0$$
; $y_0 = 1$
 $x_1 = 1$; $y_1 = 2$
 $x_2 = 3$; $y_2 = 10$
 $y = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}y_1$
 $+ \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}y_2$
 $= \frac{(x-1)(x-3)}{-1x-3} \times 1 + \frac{(x-0)(x-3)}{1x-2} \times 2 +$
 $+ \frac{(x-0)(x-1)}{3\times 2} \times 10$
 $\frac{x^2 - 4x + 3}{3} - (x^2 - 3x) + \frac{5x^2 - 5x}{3}$
 $= \frac{x^2 - 4x + 3 - 3x^2 + 9x + 5x^2 - 5x}{3}$
 $= \frac{3x^2 + 3}{3} = x^2 + 1$
(3)

$$\frac{d^{2}y}{dx^{2}} = \frac{1}{h^{2}} [\nabla^{2}y_{i} + (r+1)\nabla^{3}y_{i} + \cdots]$$

$$= \frac{1}{h^{2}} [\nabla^{2}y_{1}] \text{ approximately}$$

$$= \frac{1}{h^{2}} [\nabla y_{i+1} - \nabla y_{i}]$$

$$= \frac{1}{h^{2}} [y_{i+2} - y_{i+1} - (y_{i+1} - y_{i})]$$

$$= \frac{1}{h^{2}} [y_{i+2} - 2y_{i+1} + y_{i}]$$
which is also equal to $\frac{d^{2}y}{dx^{2}} = \frac{1}{h^{2}} (y_{i+1} - 2y_{i} + y_{i})$
which is also equal to $\frac{d^{2}y}{dx^{2}} = \frac{1}{h^{2}} (y_{i+1} - 2y_{i} + y_{i})$
27. (2)
$$\int_{a}^{a+2h} f(x) dx = \frac{h}{3} [f(a) + 4f(a+h) + f(a+2h)]$$
is called
Simpson's $\frac{1}{3}$ rule.
28. (3)

28.

Since only 3 values of x are given. Assume $y = f(x) = a_0 + a_1 x + a_2 x(x-l)$ put x=0, y=1 \Rightarrow 1 = a₀ +a₁(0)+a₂(0) \implies a₀ = 1 put x - 1, y=0 $\Rightarrow 0 = a_0 + a_1 + a_2(0)$ $\Rightarrow 0 = a_0 + a_1$ $\Rightarrow 0 = l + a_1 \Rightarrow \therefore a_{1=-1}$ put x=3, y= 10 $\therefore 10 = a_0 + 3a_1 + 6a_2$ $:: \mathbf{f}(\mathbf{x}) = \mathbf{l} - \mathbf{x} + 2\mathbf{x}(\mathbf{x} - \mathbf{l})$ $= 1 - x + 2x^2 - 2x$ $=2x^{2}-3x+1$

29. (3)

> Paricular case of R.K. formula of second order is Euler's modified formula.

30. (2)

Χ∩

Simpson's one-third rule is

$$\int_{x_0}^{x_0+nh} ydx$$

= $\frac{h}{3}[(y_0 + y_n) + 4(y_1 + y_2 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2})]$

In this case we reglect all differences above the second.

So y will be a polynomial of second degree only, i.e., $y = ax^2 + bx + c$

31. (3)

> The error in R.K. method of fourth order to solve an ordinary differential equation is of $0(h^4)$.

Required degree = 2

33. (3) Formula $(1 + \Delta) (1 - \nabla) = 1$

Download Study Materials on www.examsdaily.in

8

Follow us on FB for exam Updates: ExamsDaily

34. (3) Newton – Rapson formula

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \frac{\mathbf{f}(\mathbf{x}_n)}{\mathbf{f}'(\mathbf{x}_n)}$$

35.

(4)				
X	$y = \frac{1}{1}$	$y = \frac{1}{1 + x^2}$		
0	1	У 0		
0.2	0.9615	У1		
0.4	0.8621	y ₂		
0.6	0.7353	y ₃		
0.8	0.6098	y ₄		
1	0.5	У 5		

By Trapezoidal Rule,

$$\int_{0}^{1} \frac{dx}{1 + x^{2}}$$

$$= \frac{h}{2}[(y_{0} + y_{5}) + 2(y_{1} + y_{2} + y_{3} + y_{4})]$$

$$= \frac{0.2}{2} [1.5 + 2(3.1687)]$$

$$0.1 \times 7.8374$$

$$= 0.78374$$

36. (1)

> Simpsons $\frac{1}{3}$ rule of Integration is exact for allpolynomial of degree not exceeding 2.

37. (3)

> Particular case of Runge Kutta formula of second order is Euler's modified formula.

38. (2)

39.

Newton Raphson formula of finding the root of f(x)=0 is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
(1)

h =
$$\frac{2-0}{2}$$
 = 1
x₀ = 0
y₀ = $\frac{1}{1+x_0} - \frac{1}{1+0} - 1$
x₁ − 1
y₁ - $\frac{1}{1+1} - \frac{1}{2} = 0.5$
x₂ − 2
y₂ - $\frac{1}{1+2} - \frac{1}{3} - 0.3333$
∴ By Trapezoidal rule
 $\int_{0}^{2} \frac{dx}{1+x} = \frac{h}{2} [y_0 + 2y_1 + \frac{1}{3}]$

$$\int_0^2 \frac{dx}{1+x} = \frac{h}{2} [y_0 + 2y_1 + y_2]$$
$$= \frac{1}{2} [1 + 2(0.5) + 0.3333]$$
$$= 1.1666$$

40. (3)

41. (1)
h = interval length
= 0.3
By Simpsons
$$\frac{1}{3}$$
 rule
 $k = \frac{h}{3} = \frac{0.3}{3}$
= 0.1

Let
$$x = \sqrt{a}$$

 $\Rightarrow x^2 - a = 0$
Let $f(x) = x^2 - a$
then $f'(x) = 2x$
 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
 $= x_n - \left(\frac{x_n^2 - a}{2x_n}\right)$
 $= \frac{1}{2} \left[\frac{2x_n^2 - x_n^2 + a}{x_n}\right]$
 $= \frac{1}{2} \left[x_n + \frac{a}{x_n}\right]$
43. (1)

Newton Raphson Method $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ $f(x) = x \sin x + \cos x$

Download Study Materials on www.examsdaily.in

Follow us on FB for exam Updates: ExamsDaily

44.

45.

 $f'(x) = x \cos x + \sin x - \sin x$ $= x \cos x$ ∴By Newton Raphson method $x_{n+1} = x_n - \frac{x_n \sin x_n + \cos x_n}{x_n \cos x_n}$ (1)Since only 4 values of x are given assume f(x) to be a polynomial of degree 3 Let $f(x) = a_0 + a_1x + a_2x$ (x-1) $+ a_3 x (x-1) (x-2)$ put x = -1, f(x) = 1 \implies 1 = a₀ - a₁ + 2a₂ - 6a₃ (1) x = 0 then f(x) = 1 $\therefore 1 = a_0 + a_1 0 + a_2 0 + a_3 0$ $\Rightarrow a_0 = 1$ (2) put x = 0 then f(x) = 1 $: 1 = a_0 + a_1$ \implies a_i = 0 (3) put x = 2then $-5 = a_0 + 2a_1 + 2_2a$ $:1+0+2a_2 = -5$ $2a_2 = -6$ $a_2 = -3$ (4) put the values of a_0 , a_1 , a_2 in (1) $1 - 0 - 6 - 6a_3 = 1$ $6a_3 = -6$ $a_3 = -1$ $\therefore f(x) = 1 + 0x + (-3) x (x-1) + x(x-1) (x-2)$ $= 1 - 3x^{2} + 3x - x (x^{2} - 3x + 2)$ $= 1 - 3x^{2} + 3x - x^{3} + 3x^{2} - 2x$ $= 1 + x - x^{3}$ $\therefore f(x) = 1 + x - x^3$ (2) $x_0 = 1$; $y_0 = 1$; $y_1 = 2.875$ $\begin{array}{ll} x_3 = 2.4 & ; & y_3 = 14 \\ x_4 = 3 & ; & y_4 = 25 \end{array}$; $y_3 = 14.125$ Simpson's $\frac{1}{2}$ formula

 $=\frac{h}{3}[y_0+y_n+4(y_1+y_3+...)+2(y_2+y_4+...)]$ $=\frac{0.5}{3}\left[1+25+4(2.875+14.125)+2(7)\right]$ = 18.00(1)If a function f(x) is continuous between a and b and f(a) and f(b) are of opposite sign then there exists atleast one root between a and b. $f(x) = x^3 - 4x - 9$ f(2) = 8 - 8 - 9= -9 = -vef(3) = 27 - 12-9= 6 = +veHence, the root lies between 2 and 3 By first approximation $x_0 = \frac{3+2}{2} = 2.5$ Again f(2.5) = 15.625 - 10.9 = -veHence, the root lies between 2.5 and 3 Second approximation $\frac{2.5+3}{2} = 2.75$ (3) Since only 3 values of x are given assume f(x) be a polynomial of degree 2 Let $f(x) = a_0 + a_1x + a_2x$ (x-l) when x=0 f(x) = 1 \implies 1 = a₀+ a₁0+a₂0 \implies a₀ = 1 when x=l; f(x) = 0 $\Rightarrow 0 = a_0 + a_1$ \implies a₁ = -1 when x = 3, f(x) = 10 $\Rightarrow 10 = a_0 + 3a_1 + 6a_2$ \implies a₂ = 2 Nowf(x) = 1 - x + 2x(x-1) $= 1 - x + 2x^2 - 2x$ $= 2x^2 - 3x + 1$

 \therefore Required polynomial

Download Study Materials on www.examsdaily.in

Follow us on FB for exam Updates: <u>ExamsDaily</u>

10

46.

47.

$$= 2x^{2} - 3x + 1$$
48. (2)
Required degree = 2
49. (2)
 $y_{n+1,p} = y_{n-3} + \frac{4h}{3} [2y_{n-2} - y_{n-1} + 2y_{n}]$
put n = 3
 $y_{4,p} = y_{0} + \frac{4h}{3} [2y_{1} - y_{2} + 2y_{3}]$
 $= 1 + \frac{4}{3} (0.1) (2 \times 0.9 - 0.8 + 2 \times 0.7)$
 $= 1 + \frac{0.4}{3} (1.8 - 0.8 + 1.4)$
 $= 1 + \frac{0.4}{3} (2.4)$
 $= 1 + 0.32$.
 $= 1.32 \approx \frac{33}{25}$
50. (1)
 $x = \sqrt[n]{M}$
 $x^{n} = M$
Let $f(x) = x^{n} - M$
 $f'(x) = nx^{n-1}$
By Newtons formula
 $x_{k+1} = x_{k} - \frac{f(x_{k})}{f'(x_{k})}$

 $= x_k - \frac{(x_k^n - M)}{n x_k^{n-1}}$

 $=\frac{\mathbf{n}\mathbf{x}_{k}\mathbf{x}_{k}^{n-1}-\mathbf{x}_{k}^{n}+\mathbf{M}}{\mathbf{n}\mathbf{x}_{k}^{n-1}}$ $= \frac{\mathbf{x}_k^n(n-1) + \mathbf{M}}{n\mathbf{x}_k^{n-1}}$ 51. (4) h=1/2 $y = \frac{1}{1+x^2}$ Х 0 1 1 4 5 2 1 1 $\overline{2}$ $\int_0^1 \frac{1}{1+x^2} \, dx = \frac{h}{3} [y_0 + y_2 + 4y_1]$ $=\frac{1}{6}\left[1+\frac{1}{2}+\frac{16}{5}\right]$ $\begin{array}{r}
6 \ 1 & 2 \\
= \frac{1}{6} \left[\frac{10 + 5 + 32}{10} \right] \\
= \frac{1}{6} \times \frac{47}{10} \\
= \frac{47}{60}
\end{array}$ 52. (3)

Euler's modified formula is the particular case of Runge - Kutta formula.

Download Study Materials on www.examsdaily.in

11