Previous Year Questions \& Detailed Solutions

1. The rate of convergence in the Gauss-Seidal method is \qquad as fast as in Gauss Jacobi'smethod
1) thrice
2) half-times
3) twice
4) three by two times
2. In application of Simpsons $\frac{1}{3}$ rd rule, theinterval h for closer approximation should be
1) small
2) odd and large
3) large
4) even and small
3. Which of the following is a step by step method?
1) Taylor's method
2) Picards method
3) Adams Bashforth method
4) Eulers method
4. The interpolation polynomial from the data

x	0	1	3
$f(x)$	5	4	8

1) $x^{2}-2 x+5$
2) $x^{2}+2 x+5$
3) $2 x^{2}-2 x+5$
4) $2 x^{2}-5 x+5$
5. The value of the integration $\int_{a}^{a+2 h} f(x) d x i s$ approximately equal to
1) $\frac{h}{2}[f(a)+3 f(a+h)+f(a+2 h)]$
2) $\frac{h}{3}[f(a)+4 f(a+h)+f(a+2 h)]$
3) $\frac{h}{3}[f(a)+2 f(a+h)+f(a+2 h)]$
4) $\frac{h}{2}[f(a)+4 f(a+h)+f(a+2 h)]$
6. The finite difference approximation for $\frac{d^{2} y}{d x^{2}}$ at $\mathrm{x}=\mathrm{x}_{0}$ is
1) $\frac{1}{\mathrm{~h}^{2}}\left(\mathrm{y}\left(\mathrm{x}_{0}-\mathrm{h}\right)-2 \mathrm{y}\left(\mathrm{x}_{0}\right)+\mathrm{y}\left(\mathrm{x}_{0}+\mathrm{h}\right)\right]$
2) $\frac{1}{h^{2}}\left[y\left(x_{0}-h\right)+2 y\left(x_{0}\right)+y\left(x_{0}+h\right)\right]$
3) $\frac{1}{h^{2}}\left[y\left(x_{0}-h\right)-y\left(x_{0}\right)+y\left(x_{0}+h\right)\right]$
4) $\frac{1}{h^{2}}\left[y\left(x_{0}-h\right)+y\left(x_{0}\right)+y\left(x_{0}+h\right)\right.$
7. For the following data

X	0	2	4	6
Y	-1	3	7	11

the straight line $y=m x+c$ by the method of least square is

1) $y=-2 x-1$
2) $y=x-1$
3) $y=1-2 x$
4) $y=2 x-1$
8. The velocity $\mathrm{v}(\mathrm{km} / \mathrm{min})$ of a train which starts from rest, is given at fixed intervals of time t (min) as follows:

t	2	4	6	8	10	12	14	16	18	20
v	10	18	25	29	32	20	11	5	2	0

The approximate distance covered by Simpson's $\frac{1}{3}$ rule is

1) 306.3
2) 309.3
3) 310.3
4) 307.3
9. Find the cubic polynomial by Newton's forward difference which takes the following:

X	0	1	2	3
$\mathrm{f}(\mathrm{x})$	1	2	1	10

then $f(4)$ is

1) 40
2) 41
3) 39
4) 42
10. The first derivative $\frac{d y}{d x}$ at $x=0$ for the given data

X	0	1	2	3
$\mathrm{f}(\mathrm{x})$	2	1	2	5

Follow us on FB for exam Updates: ExamsDaily

1) 2
2) -2
3) -1
4) 1
11. Error in Simpson's $\frac{1}{3}$ rule is of the order
1) $-h^{2}$
2) h^{3}
3) h^{4}
4) $\frac{2 h^{3}}{3}$
12. If α, β and γ are the roots of $x^{3}+\mathrm{px}^{2}+\mathrm{qx}+1$ $=0$, then the equation whose roots are $\frac{-1}{\alpha}, \frac{-1}{\beta}, \frac{-1}{\gamma}$ is
1) $x^{3}+q x^{2}-p x-l=0$
2) $x^{3}+q x^{3}-p x+1=0$
3) $x^{3}-q x^{2}+p x-1=0$
4) $x^{3}-q x^{2}+p x+1=0$
13. In Jacobi's iteration method to get the $(\mathrm{r}+1)^{\text {th }}$ iterates, we use the
1) values of the $r^{\text {th }}$ iterates
2) values of the $(r-1)^{\text {th }}$ iterates
3) values of the $(r+1)^{\text {th }}$ iterates
4) latest available values
14. If h is the length of the intervals, then the error in the trapezoidal rule is of order
1) h
2) h^{2}
3) h^{3}
4) h^{4}
15. If E is the translation operator, then the central difference operator δ is
1) $E^{1 / 2}+E^{-1 / 2}$
2) $E^{1 / 2}-E^{-1 / 2}$
3) $\frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)$
4) $-\frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)$
16. If $\Delta f(x)=f(x+h)-f(x), E f(x)=f(x+h)$ and $\delta f(x)=\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right)$ then $\Delta \nabla$ is
1) δ^{2}
2) δ
3) $\delta^{1 / 2}$
4) $\delta^{1 / 2}+\delta_{-1 / 2}$
17. Expression for $\left(\frac{d^{2} y}{d x^{2}}\right)_{x=x_{n}}$ using Newton's backward interpolation
1) $\frac{1}{h^{2}}\left[\nabla^{2} \mathrm{f}_{\mathrm{n}}+\nabla^{3} \mathrm{f}_{\mathrm{n}}+\frac{11}{12} \nabla^{4} \mathrm{f}_{\mathrm{n}}+\cdots\right]$
2) $\frac{1}{h^{2}}\left[\nabla^{2}-\Delta^{2}-\Delta^{4}-\cdots\right] f_{n}$
3) $\frac{1}{h^{2}}\left[\Delta^{2}+\Delta^{3}+\Delta^{4}+\cdots\right] f_{n}$
4) $\frac{1}{\mathrm{~h}^{2}}\left[\Delta^{2}-\Delta^{3}-\frac{11}{12} \Delta^{4}-\cdots\right] \mathrm{f}_{\mathrm{n}}$
18. By Taylor's series method solution of $y^{\prime}=x^{2}+y^{2} ; y(0)=1$ is
1) $y=1+x-x^{2}$
2) $y=1-x+x^{2}$
3) $y=x+x^{2}+x^{3}$ 4) $y=1+x+x^{2}+\frac{4}{3} x^{3}$
19. Error in the Trapezoidal rule is of the order
1) -h
2) h^{3}
3) h^{4}
4) h^{2}
20. A river is 80 ft wide, the depth d in feet at a distance xft . from one bank is given by the following table:

x	0	10	20	30	40	50	60	70	80
y	0	4	7	9	12	15	14	8	3

Approximately the area of cross section by Simpson's $1 / 3$ rule is

1) $712 \mathrm{sq} . \mathrm{ft}$.
2) $680 \mathrm{sq} . \mathrm{ft}$.
3) $710 \mathrm{sq} . \mathrm{ft}$.
4) 610 sq.ft.
21. The first derivative $\frac{d y}{d x}$ at $x=4$ for the data.

X	0	1	2	3	4
$f(x)$	1	-2	-3	-2	1

1) -4
2) 4
3) 16
4) -16
22. If x_{0} and x_{1} are two points, $\mathrm{f}\left(\mathrm{x}_{0}\right)$ and $\mathrm{f}\left(\mathrm{x}_{1}\right)$ are of opposite signs, then the root x_{2} by regular falsi method is equal to
1) $\frac{x_{0} f\left(x_{1}\right)-x_{1} f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}$
2) $\frac{x_{0} f\left(x_{1}\right)-x_{1} f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}$
3) $\frac{x_{1} f\left(x_{0}\right)-x_{0} f\left(x_{1}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}$
4) $\frac{x_{0} f\left(x_{1}\right)-x_{1} f\left(x_{0}\right)}{f\left(x_{0}\right)-f\left(x_{1}\right)}$
23. The Newton-Raphson iteration scheme to find an approximate real root of the equationf $(x)=0$ is
1) $x_{n+1}=x_{n}+\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
2) $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
3) $x_{n+1}=x_{n}+\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
4) $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
24. Power method is used to find
1) all eigen values only
2) all eigen vectors only
3) all eigen values and eigen vectors
4) numerically largest eigen value and the corresponding eigen vector
25. Lagrangean interpolation polynomial which passes through the points $(0,1),(1,2),(3$, 10) is
1) $x^{2}+1$
2) $x^{2}-1$
3) $x^{3}+1$
4) $x^{3}-1$
26. $\frac{d^{2} y}{d x^{2}}$ is approximately equal to
1) $\frac{y_{i+1}-y_{i}-1}{2 h}$
2) $\frac{y_{i+1}+y_{i}-1}{2 h}$
3) $\frac{y_{i-1}-2 y_{i}+y_{i+1}}{h^{2}}$
4) $\frac{y_{i-1}+2 y_{i}+y_{i+1}}{h^{2}}$
27. The scheme $\int_{a}^{a+2 h} f(x) d x=\frac{h}{3}[f(a)+4 f(a+h)+f(a+2 h)$ is called
1) Trapezoidal rule
2) Simpson's $1 / 3$ rule
3) Simpson's $3 / 8$ rule
4) Weddle's rule
28. The Lagrange's interpolation polynomial curve passing through the points $(0,1)(1,0)$ and $(3,10)$ is
1) $x^{2}-2 x+1$
2) $-4 x^{2}+3 x+1$
3) $2 x^{2}-3 x+1$
4) $x^{2}-x+1$
29. Which of the following formulas is a particular case of Runge-Kutta formula of second order?
1) Taylar series formula
2) Picard's formula
3) Euler's modified formula
4) Milne's predictor formula
30. What is the highest degree of a polynomial whose definite integration using Simpson's $\frac{1}{3}$ rule gives the exact value?
1) 1
2) 2
3) 3
4) 4
31. The global error arising in using Runge Kutta method of fourth order to solve an ordinary differential equation is of
1) $0\left(\mathrm{~h}^{2}\right)$
2) $0\left(\mathrm{~h}^{3}\right)$
3) $0\left(\mathrm{~h}^{4}\right)$
4) $0\left(\mathrm{~h}^{5}\right)$
32. Simpson's one-thid rule integration is exact for all polynomial of degree not exceeding
1) 2
2) 3
3) 4
4) 5
33. With usual notations, the value of $(1+\Delta)(1-$ ∇) is
1) 0
2) 2
3) 1
4) 4
34. The modified Newton-Raphson formula of finding the root of the equation $f(x)=0$ is
1) $x_{n+1}=x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f\left(x_{n}\right)}$
2) $x_{n+1}=x_{n}-\left\{\frac{f\left(x_{n}\right)}{\frac{f\left(x_{n}\right)-f^{n}\left(x_{n}\right) f\left(x_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}}\right\}$
3) $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
4) $x_{n+1}=x_{n}+\left[\frac{f^{\prime}\left(x_{n}\right)}{f\left(x_{n}\right)-\frac{f^{\prime}\left(x_{n}\right) f\left(x_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}}\right]$
35. The value of $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$ Trapezoidal rule with $\mathrm{h}=0.2$ is
1) 0.687322
2) 0.877323
3) 0.727333
4) 0.783732
36. Simpson's one-third rule of integration is exact for all polynomial of degree not exceeding
1) 2
2) 3
3) 4
4) 5
37. Which of the following formula is a particular case of Runge - Kutta formula of the second order?
1) Taylor series formula
2) Picard's formula
3) Euler's modified formula
4) Milne's predictor formula
38. The Newton Raphson method of finding the root of the equation $f(x)=0$ is by using the formula
1) $x_{n+1}=x_{n}-\frac{f^{\prime}\left(x_{n}\right)}{f\left(x_{n}\right)}$
2) $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
3) $x_{n+1}=x_{n}+\frac{f^{\prime}\left(x_{n}\right)}{f\left(x_{n}\right)}$
4) $x_{n+1}=x_{n}+\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
39. The value of $\int_{0}^{2} \frac{d x}{1+x}$ by Trapezoidal Ruletaking $\mathrm{n}=2$ is
1) 0.645
2) 0.641
3) 0.583
4) 0.621
40. Trapezoidal rule for the evaluation of the integral $\int_{a}^{b} f(x) d x r e q u i r e s ~ t h e ~ I n t e r v a l ~ t o ~ b e ~$ divided into
1) only an even number of intervals
2) only an odd number of intervals
3) any number of intervals
4) a minimum of ten intervals
41. If $\int_{0}^{0.6} f(x) d x-k[f(0)+4 f(0.3)+f(0.6)]$ then thevalue of k when Simpson's rule is applied is
1) 0.1
2) 0.2
3) 0.3
4) 0.4
42. The Newton - Raphson formula to find an approximate value of \sqrt{a} is
1) $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)$
2) $x_{n+1}=\frac{1}{2}\left(x_{n}-\frac{a}{x_{n}}\right)$
3) $x_{n+1}=\left(x_{n}+\frac{a}{x_{n}}\right)$
4) $x_{n+1}=x_{n}-\frac{a}{x_{n}}$
43. The iteration formula given by NewtonRaphson method to find to root of the equation $x \sin x+\cos x=0$ is
1) $x_{n+1}=x_{n}-\frac{x_{n} \sin x_{n}+\cos x_{n}}{x_{n} \cos x_{n}}$
2) $x_{n+1}=x_{n}-\frac{x_{n} \cos x_{n}}{x_{n} \sin x_{n}+\cos x_{n}}$
3) $x_{n+1}=x_{n}-\frac{x_{n} \sin x_{n}+\cos x_{n}}{x_{n} \cos x_{n}+2 \sin x_{n}}$
4) $x_{n+1}=x_{n}-x_{n} \cos x_{n}+2 \sin x_{n}$
44. The interpolating polynomial for the data

x	-1	0	1	2
f	1	1	1	-5
1) $1+x-x^{3}$	2) $1+x+x^{2}$ 3) $1+x-x^{2}$			

45. Given that $\mathrm{f}(1)=1, \mathrm{f}(1.5)=2.875, \mathrm{f}(2)=7$, $\mathrm{f}(2.5)=14.125$ and $\mathrm{f}(3)=25$, the value of $\int_{1}^{3} f(x) d x$ obtained by Simpson's $\frac{1}{3}$ rule is
1) 17.50
2) 18.00
3) 18.25
4) 19.125
46. A root of $x^{3}-4 x-9=0$ using bisection method in two stages is
1) 2.75
2) 0.5361
3) 0.7969
4) 0.7123
47. The lagrange's interpolation polynomial curve passing through the points $(0,1)(1,0)$ and $(3,10)$ is
1) $x^{2}-2 x+1$
2) $-4 x^{2}+3 x+1$
3) $2 x^{2}-3 x+1$
4) $x^{2}-x+1$
48. What is the highest degree polynomial whose definite integration using Simpson's $\frac{1}{3}$-rule gives the exact value?
1) 1
2) 2
3) 3
4) 4

Follow us on FB for exam Updates: ExamsDaily
49. Milne's predictor value of $y(0,4)$ given thaty' $=\mathrm{y}-\frac{2 \mathrm{x}}{\mathrm{y}}, \mathrm{y}(0)=1$
$y^{\prime}(0.1)=0.9$.
$y^{\prime}(0.2)=0.8, y^{\prime}(0.3)=0.7$ is

1) $\frac{23}{15}$
2) $\frac{33}{25}$
3) $\frac{36}{25}$
4) $\frac{59}{50}$
50. The recurrence formula for finding the reciprocal of the $n^{\text {th }}$ root of M, by Newton's method is
1) $x_{k+1}=\frac{\left[(n-1) x_{k}^{n}+M\right]}{n x_{k}^{n-1}}$
2) $x_{k+1}=\frac{x_{k}\left[n+1-M x_{k}^{n}\right]}{n}$
3) $x_{k+1}=\frac{x_{k}\left[n-1+M x_{k}^{n}\right]}{n}$
4) $x_{k+1}=\frac{1}{n}\left(\frac{1}{x_{k}}+M x_{k}\right)$
51. The value of $\int_{0}^{1}\left(1+x^{2}\right)^{-1}$ by simpson's one-third rule with two strips is
1) $\frac{31}{60}$
2) $\frac{47}{30}$
3) $\frac{31}{40}$
4) $\frac{47}{60}$
52. Which of the following formulas is a particular case of Runge - Kutta formula of second order?
1) Taylor series formula
2) Picard's formula
3) Euler's modified formula
4) Milne's predictor formula

DETAILED SOLUTIONS

1. (3)

The rate of convergence of Gauss - Seidel method is roughly twice that of Gauss Jacobi.
2. (4)

In application of Simpsons $\frac{1}{3}$ rd rule, the intervalh for closer approximation should be even and small.
3. (4)

Download Study Materials on www.examsdaily.in

Euler's method is a step by step method.
4. (1)

Consider $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}+5$
then $f(0)=0^{2}-2(0)+5=5$
$\mathrm{f}(\mathrm{l})=1^{2}-2(1)+5=4$
$f(3)=3^{2}-2(3)+5=8$
$\therefore \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}+5$ is the requiredpolynomial.
5. (2)
$\int_{a}^{a+2 h} f(x) d x=\frac{h}{3}[f(a)+4 f(a+h)+f(a+2 h)]$
6. (1)
$\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\left(\mathrm{x}=\mathrm{x}_{0}\right)=\frac{\mathrm{f}_{1}-2 \mathrm{f}_{0}+\mathrm{f}_{-1}}{\mathrm{~h}_{2}}$
$\frac{1}{\mathrm{~h}_{2}}\left[\mathrm{y}\left(\mathrm{x}_{0}-\mathrm{h}\right)-2 \mathrm{y}\left(\mathrm{x}_{0}\right)+\mathrm{y}\left(\mathrm{x}_{0}+\mathrm{h}\right)\right]$
7. (4)

x	0	2	4	6
y	-1	3	7	11

Consider $\mathrm{y}=2 \mathrm{x}-1$
$x=0 \Rightarrow y=2(0)-1=-1$
$x=2 \Rightarrow y=2(2)-1=3$
$x=4 \Longrightarrow y=2(4)-1=7$
$x=6 \Rightarrow y=2(6)-1=11$
$\therefore y=2 x-1$ is the required straight line.
8. (*)

$$
\begin{aligned}
& \int y d x=\frac{\mathrm{h}}{3}\left[\left(\mathrm{y}_{0}+\mathrm{y}_{\mathrm{n}}\right)+4\left(\mathrm{y}+\mathrm{y}_{3}+\ldots+\mathrm{y}_{\mathrm{n}}\right)+2\left(\mathrm{y}_{2}\right.\right. \\
& \left.\left.+\mathrm{y}_{4}+\ldots \mathrm{y}_{\mathrm{n}-2}\right)\right] \\
& =\frac{2}{3}[(10+0)+4(18+29+20+5)+2(25+32+ \\
& 11+2)] \\
& =292
\end{aligned}
$$

9. (2)

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\mathrm{y}_{0}+\mathrm{p} \Delta \mathrm{f}\left(\mathrm{x}_{0}\right)+\frac{\mathrm{p}(\mathrm{p}-1)}{2!} \Delta^{2} \mathrm{f}\left(\mathrm{x}_{0}\right) \\
& +\frac{\mathrm{p}(\mathrm{p}-1)(\mathrm{p}-2)}{3!} \Delta^{3} \mathrm{f}\left(\mathrm{x}_{0}\right)
\end{aligned}
$$

where $\mathrm{p}=\frac{\mathrm{x}-\mathrm{x}_{0}}{\mathrm{~h}}$
$\Delta \mathrm{f}\left(\mathrm{x}_{0}\right)=1$
$\Delta^{2} \mathrm{f}\left(\mathrm{x}_{0}\right)=-2$
$\Delta^{3} f\left(x_{0}\right)=12$
$\mathrm{p}=\mathrm{x}$
$f(x)=1+x+\frac{x(x-1)}{2!}(-2)$
$+\frac{x(x-1)(x-2)(12)}{3!}$
$=1+\mathrm{x}-\mathrm{x}(\mathrm{x}-1)+2 \mathrm{x}(\mathrm{x}-1)(\mathrm{x}-2)$
$\therefore f(4)=1+4-4 \times 3+2 \times 4 \times 3 \times 2$
$=5-12+48$
$=41$
10. (2)

x	$\mathrm{f}(\mathrm{x})$	$\Delta \mathrm{y}$	$\Delta^{2} \mathrm{y}$	$\Delta^{3} \mathrm{y}$
0	2			
		$-1\left(\Delta \mathrm{y}_{0}\right)$		
1	1		$2\left(\Delta^{2} \mathrm{y}_{0}\right)$	
		1		$0\left(\Delta^{3} \mathrm{y}_{0}\right)$
2	2		2	
		3		
3	5			

First derivative by Newton's forward difference formula
$\mathrm{y}=\frac{1}{\mathrm{~h}}\left[\Delta \mathrm{y}_{0}-\frac{1}{2} \Delta^{2} \mathrm{y}_{0}+\frac{1}{3} \Delta^{3} \mathrm{y}_{0}-\cdots\right]$
$=\frac{1}{1}\left[-1-\frac{1}{2}(2)+\frac{1}{3}(0)\right]$
$=-1-1=-2$
11. (3)

Error in Simpson's $\frac{1}{3}$ rule is of order h^{4}
12. (3)

Results:

Let $a_{1}, a_{2}, \ldots, a_{n}$ be the roots of the equation $\mathrm{x}^{\mathrm{n}}+\mathrm{p}_{1} \mathrm{x}^{\mathrm{n}-1}+\mathrm{p}_{2} \mathrm{x}^{\mathrm{n}-2}+\ldots \mathrm{p}_{\mathrm{n}}=0$
than the roots of
$x^{n}-p_{1} x^{n-1}+p_{2} x^{n-2}-\ldots(-1)^{n} P_{n}=0$
are $-a_{1},-a_{2}, \ldots .-a_{n}$
Given
α, β, γ are root of $x^{3}+\mathrm{px}^{2}+\mathrm{qx}+1=0$
$\mathrm{x}^{3}+\mathrm{px} \mathrm{x}^{2}+\mathrm{qx}+1$
$\Rightarrow \frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$ are roots of

$$
\left(\frac{1}{x}\right)^{3}+\mathrm{p}\left(\frac{1}{\mathrm{x}}\right)^{2}+\mathrm{q}\left(\frac{1}{\mathrm{x}}\right)+1=0
$$

$\Rightarrow \mathrm{x}^{3}+\mathrm{qx}^{2}+\mathrm{px}+1=0$
$\therefore \frac{-1}{\alpha}, \frac{-1}{\beta}, \frac{-1}{\gamma}$ are roots of $\mathrm{x}^{3}-\mathrm{qx}^{2}+\mathrm{px}-\mathrm{l}=0$
13. (1)

For the system of equations
$a_{1} x+b_{1} y+c_{1} z=d_{1}$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2} \mathrm{z}=\mathrm{d}_{2}$
$\mathrm{a}_{3} \mathrm{x}+\mathrm{b}_{3} \mathrm{y}+\mathrm{c}_{3} \mathrm{z}=\mathrm{d}_{3}$
Then the $(\mathrm{r}+1)^{\text {th }}$ iteration in Jacobi's method is

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{r}+1}=\frac{1}{\mathrm{a}_{1}}\left(\mathrm{~d}_{1}-\mathrm{b}_{1} \mathrm{y}_{\mathrm{r}}-\mathrm{c}_{1} \mathrm{z}_{\mathrm{r}}\right) \\
& \mathrm{y}_{\mathrm{r}+1}=\frac{1}{\mathrm{~b}_{1}}\left(\mathrm{~d}_{2}-\mathrm{a}_{2} \mathrm{x}_{\mathrm{r}}-\mathrm{c}_{2} \mathrm{z}_{\mathrm{r}}\right) \\
& \mathrm{z}_{\mathrm{r}+1}=\frac{1}{\mathrm{c}_{3}}\left(\mathrm{~d}_{3}-\mathrm{a}_{3} \mathrm{x}_{\mathrm{r}}-\mathrm{b}_{3} \mathrm{y}_{\mathrm{r}}\right)
\end{aligned}
$$

To find $(r+1)^{\text {th }}$ iteration we use r iterations.
14. (2)

Error in the trapezoidal rule is of the order h^{2}.
15. (2)

$$
\delta \mathrm{f}(\mathrm{x})=\left(\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}\right) \mathrm{f}(\mathrm{x})
$$

16. (1)
$\delta=\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2} \mathrm{e}$
$\Delta=\mathrm{E}-1 ; \Delta=1-\mathrm{E}^{-1}$
where $\mathrm{E}=\mathrm{f}(\mathrm{x}+\mathrm{h})$
$\mathrm{E}^{-1}=\mathrm{f}(\mathrm{x}-\mathrm{h})$
$E^{1 / 2}=f(x+h / 2) ; E^{-1 / 2}=f(x-h / 2)$
$\Delta \nabla=(\mathrm{E}-1)\left(1-\mathrm{E}^{-1}\right)$
$=\mathrm{E}-1-1+\mathrm{E}^{-1}$
$=\mathrm{E}+\mathrm{E}^{-1}-2$
$\mathrm{d} \delta^{2}=\left(\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}\right) 2$
$=E-2 \mathrm{E}^{1 / 2} \mathrm{E}^{-1 / 2}+\mathrm{E}^{-1}$
$=\mathrm{E}^{-2}+\mathrm{E}^{-1}$

Follow us on FB for exam Updates: ExamsDaily
(1) $=(2)$
$\therefore \Delta \nabla=\delta^{2}$
17. (4)

Standard formula

$$
\begin{gathered}
\left(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\right)_{\mathrm{x}=\mathrm{x}_{\mathrm{n}}} \\
\frac{1}{\mathrm{~h}^{2}}\left[\Delta^{2}-\Delta^{3}+\frac{11}{12} \Delta^{4}-\cdots\right] \mathrm{f}_{\mathrm{n}}
\end{gathered}
$$

18. (4)

Taylor's series
$\mathrm{y}=\mathrm{y}_{0}+\frac{\mathrm{h}}{1!} \mathrm{y}_{0}{ }^{\prime}+\frac{\mathrm{h}^{2}}{2!} \mathrm{y}_{0}^{\prime \prime}+\frac{\mathrm{h}^{3}}{3!} \mathrm{y}_{0}{ }^{\prime \prime \prime}+\ldots$.
Given $y(0)=1$
$\Rightarrow y_{0}=1 ; x_{0}=0$
$y^{\prime}=x^{2}+y^{2}$ (Given)
$y_{0}{ }^{\prime}=0+1=1$
$y^{\prime \prime}=2 x+2 y y^{\prime}$
$\mathrm{y}_{0}{ }^{\prime \prime}=2(0)+2.1 .1$
$=2$
$y^{\prime \prime}=2+2\left(y y^{\prime \prime}+\left(y^{\prime}\right) 2\right)$
$=2+2\left(1.2+1^{2}\right)$
$=2+2(2+1)$
$=8$
putting $h-x$ then
$y=1+\frac{x}{1!}+\frac{x^{2}}{2!} 2+\frac{x^{3}}{3!} 8$
$=1+x+x^{2}+\frac{4}{3} x^{3}$
19. (4)Error in theTrapezoidal rule is of the order h^{2}.
20. (3)

Simpson's $\frac{1}{2}$ rule
$=\int_{x_{0}}^{x_{0}+n h} f(x) d x$
$=\frac{\mathrm{h}}{3}\left[\mathrm{y}_{0}+4\left(\mathrm{y}_{1}+\mathrm{y}_{3}+\cdots\right)+2\left(\mathrm{y}_{2}+\mathrm{y}_{4}+\right.\right.$
...+yn
$=\frac{h}{3}\left[y_{0}+y_{n}+4\right.$ (sum of odd ordinates)
+2sum of even ordinates)]
\therefore Cross Section Area
$=\frac{10}{3}[(0+3+4(4+9+15+8)+2(7+12+14)]$
$=\frac{10}{3}[3+144+66]$
$=710 \mathrm{sq} . \mathrm{ft}$.
21. (2)

Newtons formula for Backward difference
$\mathrm{f}^{\prime}(\mathrm{x})=\frac{1}{h}\left[\nabla \mathrm{y}_{0}+\frac{1}{2} \nabla^{2} \mathrm{y}_{0}+\frac{1}{3} \nabla^{3} \mathrm{y}_{0} \ldots\right]$
$=\frac{1}{1}\left[3+\frac{2}{2}\right]$
$=4$
22. (2)

By regular - falsi method the root is given by

$$
\frac{x_{0} f\left(x_{1}\right)-x_{1} f\left(x_{0}\right)}{f\left(x_{1}\right)-f\left(x_{0}\right)}
$$

23. (2)

The Newton - Rapson Iteration scheme to find an approximate real root of the equation $f(x)=0$ is
$\mathrm{x}_{\mathrm{n}+1}=\mathrm{X}_{\mathrm{n}}-\frac{\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right)}$
24. (4)

Power method is used to determine numerically largest eigen value and the corresponding eigen vector of a matrix A .
25. (1)

Let $\mathrm{x}_{0}=0 ; \mathrm{y}_{0}=1$
$\mathrm{x}_{1}=1 ; \mathrm{y}_{1}=2$
$\mathrm{x}_{2}=3 ; \mathrm{y}_{2}=10$
$y=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} y_{1}$
$+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} y_{2}$
$=\frac{(x-1)(x-3)}{-1 \times-3} \times 1+\frac{(x-0)(x-3)}{1 \times-2} \times 2+$
$+\frac{(x-0)(x-1)}{3 \times 2} \times 10$
$\frac{x^{2}-4 x+3}{3}-\left(x^{2}-3 x\right)+\frac{5 x^{2}-5 x}{3}$
$=\frac{x^{2}-4 x+3-3 x^{2}+9 x+5 x^{2}-5 x}{3}$
$=\frac{3 x^{2}+3}{3}=x^{2}+1$
26. (3)
$\frac{d^{2} y}{d^{2}}=\frac{1}{h^{2}}\left[\nabla^{2} y_{i}+(r+1) \nabla^{3} y_{i}+\cdots\right]$
$=\frac{1}{h^{2}}\left[\nabla^{2} y_{1}\right]$ approximately
$=\frac{1}{h^{2}}\left[\nabla y_{i+1}-\nabla y_{i}\right]$
$=\frac{1}{h^{2}}\left[y_{i+2}-y_{i+1}-\left(y_{i+1}-y_{i}\right)\right]$
$=\frac{1}{h^{2}}\left[y_{i+2}-2 y_{i+1}+y_{i}\right]$
which is also equal to $\frac{d^{2} y}{d x^{2}}=\frac{1}{h^{2}}\left(y_{i+1}-2 y_{i}+\right.$ yi-1
27. (2)
$\int_{a}^{a+2 h} f(x) d x=\frac{h}{3}[f(a)+4 f(a+h)+f(a+2 h)]$
is called
Simpson's $\frac{1}{3}$ rule.
28. (3)

Download Study Materials on www.examsdaily.in

Since only 3 values of x are given. Assume
$y=f(x)=a_{0}+a_{1} x+a_{2} x(x-1)$
put $\mathrm{x}=0, \mathrm{y}=1$
$\Rightarrow 1=\mathrm{a}_{0}+\mathrm{a}_{1}(0)+\mathrm{a}_{2}(0)$
$\Rightarrow \mathrm{a}_{0}=1$
put $\mathrm{x}-1, \mathrm{y}=0$
$\Rightarrow 0=a_{0}+a_{1}+a_{2}(0)$
$\Rightarrow 0=a_{0}+a_{1}$
$\Rightarrow 0=1+a_{1} \Rightarrow: a_{1=-1}$
put $\mathrm{x}=3, \mathrm{y}=10$
$\therefore 10=a_{0}+3 a_{1}+6 a_{2}$
$\therefore \mathrm{f}(\mathrm{x})=1-\mathrm{x}+2 \mathrm{x}(\mathrm{x}-\mathrm{l})$
$=1-\mathrm{x}+2 \mathrm{x}^{2}-2 \mathrm{x}$
$=2 x^{2}-3 x+1$
29. (3)

Paricular case of R.K. formula of second order is Euler's modified formula.
30. (2)

Simpson's one-third rule is

$$
\begin{aligned}
\int_{\mathrm{x}_{0}}^{\mathrm{x}_{0}+\mathrm{nh}} \mathrm{ydx} & \\
& =\frac{\mathrm{h}}{3}\left[\left(\mathrm{y}_{0}+\mathrm{y}_{\mathrm{n}}\right)\right. \\
& +4\left(\mathrm{y}_{1}+\mathrm{y}_{2}+\cdots \mathrm{y}_{\mathrm{n}-1}\right) \\
& \left.+2\left(\mathrm{y}_{2}+\mathrm{y}_{4}+\cdots \mathrm{y}_{\mathrm{n}-2}\right)\right]
\end{aligned}
$$

In this case we reglect all differences above the second.
So y will be a polynomial of second degree only, i.e., $y=a x^{2}+b x+c$
31. (3)

The error in R.K. method of fourth order to solve an ordinary differential equation is of $0\left(h^{4}\right)$.
32. (1)

Required degree $=2$
33. (3)

Formula
$(1+\Delta)(1-\nabla)=1$
34. (3)

Newton - Rapson formula

$$
\mathrm{x}_{\mathrm{n}+1}=\mathrm{x}_{\mathrm{n}}-\frac{\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right)}
$$

35. (4)

X	$\mathrm{y}=\frac{1}{1+\mathrm{x}^{2}}$	
0	1	y_{0}
0.2	0.9615	y_{1}
0.4	0.8621	y_{2}
0.6	0.7353	y_{3}
0.8	0.6098	y_{4}
1	0.5	y_{5}

By Trapezoidal Rule,

$$
\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}
$$

$=\frac{h}{2}\left[\left(y_{0}+y_{5}\right)+2\left(y_{1}+y_{2}+y_{3}+y_{4}\right)\right]$
$=\frac{0.2}{2}[1.5+2(3.1687)]$
0.1×7.8374
$=0.78374$
36. (1)

Simpsons $\frac{1}{3}$ rule of Integration is exact for allpolynomial of degree not exceeding 2 .
37. (3)

Particular case of Runge Kutta formula of second order is Euler's modified formula.
38. (2)

Newton Raphson formula of finding the root of $f(x)=0$ is
$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
39. (1)
$\mathrm{h}=\frac{2-0}{2}=1$
$\mathrm{x}_{0}=0$
$y_{0}=\frac{1}{1+x_{0}}-\frac{1}{1+0}-1$
$\mathrm{x}_{1}-1$
$\mathrm{y}_{1}-\frac{1}{1+1}-\frac{1}{2}=0.5$
$\mathrm{x}_{2}-2$
$\mathrm{y}_{2}-\frac{1}{1+2}-\frac{1}{3}-0.3333$
\therefore By Trapezoidal rule
$\int_{0}^{2} \frac{\mathrm{dx}}{1+\mathrm{x}}=\frac{\mathrm{h}}{2}\left[\mathrm{y}_{0}+2 \mathrm{y}_{1}+\mathrm{y}_{2}\right]$
$=\frac{1}{2}[1+2(0.5)+0.3333]$
$=1.1666$
40. (3)

Any number of intervals.
41. (1)
$\mathrm{h}=$ interval length
$=0.3$
By Simpsons $\frac{1}{3}$ rule
$\mathrm{k}=\frac{\mathrm{h}}{3}=\frac{0.3}{3}$
$=0.1$
42. (1)

Let $\mathrm{x}=\sqrt{\mathrm{a}}$
$\Rightarrow x^{2}-a=0$
Let $f(x)=x^{2}-a$
thenf ${ }^{\prime}(x)=2 x$
$\mathrm{x}_{\mathrm{n}+1}=\mathrm{x}_{\mathrm{n}}-\frac{\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right)}$
$=\mathrm{x}_{\mathrm{n}}-\left(\frac{\mathrm{x}_{\mathrm{n}}^{2}-\mathrm{a}}{2 \mathrm{x}_{\mathrm{n}}}\right)$
$=\frac{1}{2}\left[\frac{2 x_{n}^{2}-x_{n}^{2}+\mathrm{a}}{\mathrm{x}_{\mathrm{n}}}\right]$
$=\frac{1}{2}\left[\mathrm{X}_{\mathrm{n}}+\frac{\mathrm{a}}{\mathrm{x}_{\mathrm{n}}}\right]$
43. (1)

Newton Raphson Method
$\mathrm{x}_{\mathrm{n}+1}=\mathrm{x}_{\mathrm{n}}-\frac{\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)}{\mathrm{f}^{\prime}\left(\mathrm{x}_{\mathrm{n}}\right)}$
$f(x)=x \sin x+\cos x$

Follow us on FB for exam Updates: ExamsDaily
$f^{\prime}(x)=x \cos x+\sin x-\sin x$
$=\mathrm{x} \cos \mathrm{x}$
\therefore By Newton Raphson method
$\mathrm{x}_{\mathrm{n}+1}=\mathrm{x}_{\mathrm{n}}-\frac{\mathrm{x}_{\mathrm{n}} \sin \mathrm{x}_{\mathrm{n}}+\cos \mathrm{x}_{\mathrm{n}}}{\mathrm{x}_{\mathrm{n}} \cos \mathrm{x}_{\mathrm{n}}}$
44. (1)

Since only 4 values of x are given assume $f(x)$ to be a polynomial of degree 3
Let $\mathrm{f}(\mathrm{x})=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{x}+\mathrm{a}_{2} \mathrm{x}(\mathrm{x}-1)$
$+\mathrm{a}_{3} \mathrm{x}(\mathrm{x}-1)(\mathrm{x}-2)$
put $\mathrm{x}=-1, \mathrm{f}(\mathrm{x})=1$
$\Rightarrow 1=\mathrm{a}_{0}-\mathrm{a}_{1}+2 \mathrm{a}_{2}-6 \mathrm{a}_{3}$
$\mathrm{x}=0$ then $\mathrm{f}(\mathrm{x})=1$
$\therefore 1=\mathrm{a}_{0}+\mathrm{a}_{1} 0+\mathrm{a}_{2} 0+\mathrm{a}_{3} 0$
$\Rightarrow \mathrm{a}_{0}=1$
put $x=0$ then $f(x)=1$
$\therefore 1=\mathrm{a}_{0}+\mathrm{a}_{1}$
$\Rightarrow \mathrm{a}_{\mathrm{i}}=0$
put $\mathrm{x}=2$
then $-5=\mathrm{a}_{0}+2 \mathrm{a}_{1}+22_{2} \mathrm{a}$
$\therefore 1+0+2 \mathrm{a}_{2}=-5$
$2 \mathrm{a}_{2}=-6$
$a_{2}=-3$
put the values of a_{0}, a_{1}, a_{2} in (1)

$$
\begin{aligned}
& 1-0-6-6 a_{3}=1 \\
& 6 a_{3}=-6 \\
& \mathrm{a}_{3}=-1 \\
& \therefore \mathrm{f}(\mathrm{x})=1+0 \mathrm{x}+(-3) \mathrm{x}(\mathrm{x}-1)+\mathrm{x}(\mathrm{x}-1)(\mathrm{x}-2) \\
& =1-3 \mathrm{x}^{2}+3 \mathrm{x}-\mathrm{x}\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right) \\
& =1-3 \mathrm{x}^{2}+3 \mathrm{x}-\mathrm{x}^{3}+3 \mathrm{x}^{2}-2 \mathrm{x} \\
& =1+\mathrm{x}-\mathrm{x}^{3} \\
& \therefore \mathrm{f}(\mathrm{x})=1+\mathrm{x}-\mathrm{x}^{3}
\end{aligned}
$$

45. (2)

$$
\begin{array}{ll}
\mathrm{x}_{0}=1 & ; \\
\mathrm{y}_{0}=1 \\
\mathrm{x}_{1}=1.5 & ; \\
\mathrm{y}_{1}=2.875 \\
\mathrm{x}_{2}=2 & ; \\
\mathrm{y}_{2}=7 \\
\mathrm{x}_{3}=2.4 & ; \\
\mathrm{y}_{4}=3 & ; \\
\mathrm{y}_{4}=25
\end{array}
$$

Simpson's $\frac{1}{3}$ formula
$=\frac{h}{3}\left[y_{0}+y_{n}+4\left(y_{1}+y_{3}+\ldots\right)+2\left(y_{2}+y_{4}+\ldots\right)\right]$
$=\frac{0.5}{3}[1+25+4(2.875+14.125)+2(7)]$
$=18.00$
46. (1)

If a function $f(x)$ is continuous between a and b and $f(a)$ and $f(b)$ are of opposite sign then there exists atleast one root between a and b.
$f(x)=x^{3}-4 x-9$
$f(2)=8-8-9$
$=-9=-\mathrm{ve}$
$\mathrm{f}(3)=27-12-9$
$=6=+\mathrm{ve}$
Hence, the root lies between 2 and 3
By first approximation
$\mathrm{x}_{0}=\frac{3+2}{2}=2.5$
Again $f(2.5)=15.625-10-9=-v e$
Hence, the root lies between 2.5 and 3
Second approximation

$$
\frac{2.5+3}{2}=2.75
$$

47. (3)

Since only 3 values of x are given assume $f(x)$ be a polynomial of degree 2
Let $f(x)=a_{0}+a_{1} x+a_{2} x(x-1)$
when $\mathrm{x}=0 \mathrm{f}(\mathrm{x})=1$
$\Rightarrow 1=a_{0}+a_{1} 0+a_{2} 0$
$\Rightarrow \mathrm{a}_{0}=1$
when $\mathrm{x}=\mathrm{l} ; \mathrm{f}(\mathrm{x})=0$
$\Rightarrow 0=\mathrm{a}_{0}+\mathrm{a}_{1}$
$\Rightarrow a_{1}=-1$
when $x=3, f(x)=10$
$\Rightarrow 10=\mathrm{a}_{0}+3 \mathrm{a}_{1}+6 \mathrm{a}_{2}$
$\Rightarrow \mathrm{a}_{2}=2$
$\operatorname{Nowf}(\mathrm{x})=1-\mathrm{x}+2 \mathrm{x}(\mathrm{x}-1)$
$=1-\mathrm{x}+2 \mathrm{x}^{2}-2 \mathrm{x}$
$=2 \mathrm{x}^{2}-3 \mathrm{x}+1$
\therefore Required polynomial
Follow us on FB for exam Updates: ExamsDaily
$=2 x^{2}-3 x+1$
48. (2)

Required degree $=2$
49. (2)

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{n}+1, \mathrm{p}}=\mathrm{y}_{\mathrm{n}-3}+\frac{4 \mathrm{~h}}{3}\left[2 \mathrm{y}_{\mathrm{n}-2}-\mathrm{y}_{\mathrm{n}-1}+2 \mathrm{y}_{\mathrm{n}}\right] \\
& \text { put } \mathrm{n}=3 \\
& \mathrm{y}_{4, \mathrm{p}}=\mathrm{y}_{0}+\frac{4 \mathrm{~h}}{3}\left[2 \mathrm{y}_{1}-\mathrm{y}_{2}+2 \mathrm{y}_{3}\right] \\
& =1+\frac{4}{3}(0.1)(2 \times 0.9-0.8+2 \times 0.7) \\
& =1+\frac{0.4}{3}(1.8-0.8+1.4) \\
& =1+\frac{0.4}{3}(2.4) \\
& =1+0.32 . \\
& =1.32 \approx \frac{33}{25}
\end{aligned}
$$

50. (1)
$x=\sqrt[n]{M}$
$x^{n}=M$
Let $f(x)=x^{n}-M$
$\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{nx}^{\mathrm{n}-1}$
By Newtons formula

$$
\begin{aligned}
& x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} \\
& =x_{k}-\frac{\left(x_{k}^{n}-M\right)}{n x_{k}^{n}-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n x_{k} x_{k}^{n-1}-x_{k}^{n}+M}{n x_{k}^{n-1}} \\
& =\frac{x_{k}^{n}(n-1)+M}{n x_{k}^{n-1}}
\end{aligned}
$$

51. (4) $\mathrm{h}=1 / 2$

X	$y=\frac{1}{1+x^{2}}$
0	1
	$\frac{1}{2}$
1	$\frac{4}{5}$

$\int_{0}^{1} \frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}=\frac{\mathrm{h}}{3}\left[\mathrm{y}_{0}+\mathrm{y}_{2}+4 \mathrm{y}_{1}\right]$
$=\frac{1}{6}\left[1+\frac{1}{2}+\frac{16}{5}\right]$
$=\frac{1}{6}\left[\frac{10+5+32}{10}\right]$
$=\frac{1}{6} \times \frac{47}{10}$
$=\frac{47}{60}$
52. (3)

Euler's modified formula is the particular case of Runge - Kutta formula.

Join Us on FB
English - Examsdaily Tamil - Examsdaily Tamil

Whatsapp Group

English - Click Here

Tamil - Click Here

