

Applied Probability

Applied Probability

- 1. Probability = $\frac{\text{Number of favourable cases}}{\text{Number of possible cases}}$ = $\frac{n(A)}{n(S)}$
- 2. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 3. $P(\overline{A}) = 1 P(A)$
- 4. $P(\phi) = 0$; P(S) = 1
- 5. $P(\overline{A} \cap B) = P(B) P(A \cap B)$
- 6. A and B are independent events then, $P(A \cap B) = P(A)$. P(B)
- 7. Conditional probability:

The conditional probability of A, when the event B has already defined is

$$P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Similarly,

$$P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)}$$

- 8. $P(A \cap B) = P(A) P\left(\frac{B}{A}\right)$ $P(A \cap B) = P(B) P\left(\frac{A}{B}\right)$
- 9. Bay's Theorem:

Let A_1 , A_2 ,..... A_n be n mutually exclusive and exhausitive events. Let B be an

independent event such that $B \subset \bigcup_{i=1}^{N} A_i is$

the conditional probability of B given that $A_{\rm i}$ has already occurred, then

$$P\left(\frac{A_{i}}{B}\right) = \frac{P(A_{i})P\left(\frac{B}{A_{i}}\right)}{\sum_{i=1}^{n} P(A_{i})P\left(\frac{B}{A_{i}}\right)}$$

Probability Mass Function:

Let X be a one - dimensional discrete random variable takes the values $x_1, x_2,....$

If i)
$$P(x_i) \ge 0$$

ii)
$$\sum_{i=1}^{\infty} P(x_i) = 1$$

Then, the function P is called the probability mass function.

Probability densitieve function:

If 1) $f(x) \ge 0$, $-\infty < x < 0$

$$2) \int_{-\infty}^{\infty} f(x) dx = 1$$

Then, f(x) is called the probability density function

Cumulative Distributive Function:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$$

In case of discrete variables,

$$F(x_1) = P(X \le x_i) = \sum_{n=1}^{i} P(x_n)$$

Binomial Distribution:

1.
$$P(X = r) = P(r)$$

$$= {}^{n}C_{r}p^{r}q^{n-r}$$

$$(r = 0, 1, 2,n)$$

- 2. i) Mean of binomial distribution = np
- ii) Variance = npq
- iii) Standard deviation S.D. = \sqrt{npq}

iv)
$$p + q = 1$$

Poisson Distribution

$$P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}$$
, $x = 0, 1, 2, \dots$

= 0 otherwise

Remarks:

- i) Poisson distribution is a limiting case of binomial distribution under the conditions, $n \to \infty$ and $p \to 0$
- ii) $np = \lambda$
- iii) Mean = λ
- iv) Variance = λ
- v) S.D. = λ

Normal Distribution:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} - \infty < x < \infty$$

Standard Normal Distribution:

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

Where
$$z = \frac{x-\mu}{\sigma}$$

Applied Probability

Properties:

i) Mean = median = mode

ii) The normal curve is perfectly symmetrical about the mean. This means that if we fold the curve along the vertical line at μ , the two halves of the curve will coincide.

iii) Maximum ordinate is at $x = \mu$.

Its value is $\frac{1}{\sigma\sqrt{2\pi}}$

Join Us on FB

English – **Examsdaily**

Tamil – **Examsdaily Tamil**

Whatsapp Group

English - Click Here

Tamil - Click Here