Previous Year Solved Questions

1. The mapping $w=z^{2}-2 z-3$ is
1) conformal everywhere
2) not conformal at $z=-1$ and $z=-3$
3) conformal with $|z|=1$
4) not conformal at $\mathrm{z}=1$
2. The residue at $\mathrm{z}=0$ of $\frac{1+\mathrm{e}^{2}}{\mathrm{z} \cos \mathrm{z}+\sin \mathrm{z}}$ is
1) 0
2) 1
3) 4
4) -1
3. The value of $\int_{c} \frac{3 z^{2}+7 z+1}{z+1} d z$ where C is $|z|=0.5$ is
1) 0
2) $\frac{\pi i}{2}$
3) πi
4) $2 \pi i$
4. Singularity of $z e^{1 / x^{2}}$ at $\mathrm{z}=0$ is of the type
1) isolated singularity
2) removable singularity
3) essential singularity
4) isolated and removable singularities
5. The analytic function which maps an angularregion $0 \leq \theta \leq \frac{\pi}{4}$ on to the upper half plane is
1) $4 z$
2) z^{4}
3) 2θ
4) z^{2}
6. Let $f(z)=u+i v$ be an analytic function which of the following statements are correct?
a) both u and v satisfy Laplace equation
b) Family of curves $u=c$, and $v=C 2$ cut orthogonally
c) $u_{x}=-v_{y}$ and $u_{y}=v_{x}$
d) u-iv is also an analytic function
1) (a) and (b) only
2) (a), (b) and (c) only
3) (a), (b) and (d) only
4) (b), (c) and (d) only
7. The image of the straight line $2 x+3 y+5=$ Ounder the transformation $\mathrm{w}=\frac{1}{\mathrm{z}}$ is a
1) straight line
2) parabola
3) ellipse
4) circle
8. The value of the Integral $\int_{c} \frac{z^{2}+5}{(z-1)^{2}} d z$, wherez is a complex number and C is the circle $\mid \mathrm{z}$ $1 \mid=1$, is
1) $12 \pi i$
2) $6 \pi i$
3) $4 \pi i$
4) $2 \pi i$
9. The residue of the functionf $(z)=\frac{z^{3}+5 z+7}{(z-2)(z+3)^{3}}$ at the simple pole is
1) 1
2) 5
3) 25
4) 30
10. $\mathrm{C}-\mathrm{R}$ equation for a functionW $=\mathrm{P}(\mathrm{r}, \quad \theta) \quad+$ $\mathrm{i} \mathrm{Q}(\mathrm{r}, \theta)$ to be analytic, in Polarform are
1) $\frac{\partial \mathrm{P}}{\partial \mathrm{r}}=\frac{1}{\mathrm{r}} \frac{\partial \mathrm{Q}}{\partial \theta} ; \frac{\partial \mathrm{Q}}{\partial \mathrm{r}}=-\frac{1}{\mathrm{r}} \frac{\partial \mathrm{P}}{\partial \theta}$
2) $\frac{\partial \mathrm{Q}}{\partial \theta}=\frac{1}{\mathrm{r}} \frac{\partial \mathrm{P}}{\partial \mathrm{r}} ; \frac{\partial \mathrm{P}}{\partial \theta}=\frac{1}{\mathrm{r}} \frac{\partial \mathrm{Q}}{\partial \mathrm{r}}$
3) $\frac{\partial \mathrm{P}}{\partial \mathrm{r}}=-\frac{1}{\mathrm{r}} \frac{\partial \mathrm{Q}}{\partial \theta}$; $\frac{\partial \mathrm{Q}}{\partial \mathrm{r}}=\frac{1}{\mathrm{r}} \frac{\partial \mathrm{P}}{\partial \theta}$
4) $\frac{\partial \mathrm{P}}{\partial \theta}=\frac{1}{\mathrm{r}} \frac{\partial \mathrm{Q}}{\partial \mathrm{r}} ; \frac{\partial \mathrm{Q}}{\partial \theta}=-\frac{1}{\mathrm{r}} \frac{\partial \mathrm{P}}{\partial \theta}$
11. If $f(z)+u+i v$ le an analytic function and u and v are harmonic, then u and v will satisfy
1) one dimensional wave equation
2) one dimensional wave equation
3) Laplace equation
4) Poisson equation
12. In the analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ the curves $u(x, y)=C_{1}$ and $V(x, y)=C_{2}$ are orthogonal If the product of the slopes m_{1} and m_{2} are
1) $m_{1} m_{2}=0$
2) $m_{1} m_{2}=-\pi$
3) $\left.m_{1} m_{2}=-\frac{\pi}{2}-4\right) m_{1} m_{2}=-1$
13. If the Imaginary part of the analytic function $f(z)=u+i v$ is constant, then
1) u is not a constant
2) $f(z)$ is not a complex constant
3) $f(z)$ is equal to zero
4) u is a constant
14. If $f(z)=P(r, \theta)+i Q(r, \theta)$ is analytic, then $\mathrm{f}^{\prime}(\mathrm{z})$ is equal to
1) $e^{i \theta}\left[\frac{\partial P}{\partial r}+i \frac{\partial Q}{\partial \theta}\right]$
2) $\mathrm{e}^{-\mathrm{i} \theta}\left[\frac{\partial \mathrm{P}}{\partial \mathrm{r}}+\mathrm{i} \frac{\partial \mathrm{Q}}{\partial \theta}\right]$
3) $\mathrm{e}^{-\mathrm{i} \theta}\left[\frac{\partial \mathrm{P}}{\partial \mathrm{r}}+\mathrm{i} \frac{\partial \mathrm{Q}}{\partial \mathrm{r}}\right]$
4) $e^{i \theta}\left[\frac{\partial P}{\partial r}+i \frac{\partial Q}{\partial r}\right]$
15. The necessary and sufficient conditions for the function $f(x)=u(r, \theta)+i(r, \theta)$ to be analytic is
1) $u_{r}=r v_{0}$ and $u_{0}=\frac{-1}{r} v_{r}$
2) $u_{r}=\frac{1}{r} v_{\theta}$ and $u_{\theta}=-r v_{r}$
3) $u_{\theta}=\frac{1}{r} v_{\theta}$ and $u_{\theta}=r v_{r}$
4) $u_{r}=r v_{0}$ and $u_{0}=\frac{1}{r} v_{r}$
16. The function $f(z)=z+2 \bar{z} i s$
1) analytic in the upper half plane
2) analytic inside the unit circle
3) analytic everywhere in complex plane
4) not analytic anywhere In the complex plane
17. In the two dimensional fluid flow, if the stream function is $\psi=\frac{-y}{x^{2}+y^{2}}$, then the velocity potential ϕ is
1) $\phi=\frac{x}{x^{2}+y^{2}}$
2) $\phi=\frac{y}{x^{2}+y^{2}}$
3) $\phi=\frac{-x}{x^{2}+y^{2}}$
4) $\phi=\frac{-y}{x^{2}+y^{2}}$
18. The value of the Integral $\int \frac{2 z+1}{z^{2}+2} d z$, where C is $|z|=\frac{1}{2}$ is
1) $2 \pi i$
2) $3 \pi i$
3) $5 \pi \mathrm{i}$
4)0
19. The residue of $z \cos \frac{1}{z}$ at $z=0$ is
1) 1
2) -1
3) $\frac{1}{2}$
4) $\frac{-1}{2}$
20. The analytic function, whose real part $\left(\frac{x}{x^{2}+y^{2}}\right)$ is given by
1) z^{2}
2) $\overline{\mathrm{Z}}$
3) $\frac{1}{z}$
4) $z+\frac{1}{z}$
21. Cauchy - Riemann conditions forf $(\mathrm{z})=\mathrm{u}(\mathrm{r}, \theta)$ $+\mathrm{iV}(\mathrm{r}, \theta)$ is
1) $u_{r}=V_{0} ; u_{\theta}=-V_{r}$
2) $r u_{r}=v_{\theta} ; r v_{r}=u_{0}$
3) $r u_{\theta}=V_{r} ; r v_{\theta}=-u_{r}$
4) $r u_{r}=v_{\theta} ; u_{\theta}=-r V_{r}$
22. Choose the correct answer. If $w=f(z)$ is analytic, then
1) $\frac{\partial \mathrm{w}}{\partial \mathrm{z}}=\mathrm{i} \frac{\partial \mathrm{w}}{\partial \mathrm{z}}$
2) $\frac{\partial w}{\partial z}=\frac{\partial w}{\partial y}$
3) $\frac{\partial^{2} w}{\partial z \partial \bar{z}} \neq 0$
4) $\frac{\partial \mathrm{w}}{\partial \overline{\mathrm{Z}}}=0$
23. The value of m such that $2 x-x^{2}+m y^{2}$ may be harmonic is
1) 3
2) 1
3) 2
4) 4
24. Image of circle $|z|=2$ by the transformation $\mathrm{w}=\mathrm{z}+2+3 \mathrm{i}$, is
1) $|w+(2+3 i)|=2$
2) $|w-(2+3 i)|=3$
3) $|w-(2+3 i)|=2$
4) $|w|=1$
25. Value of integral $\int_{c}(z+1) d z$, where C is asquare with vertices $0,1,1+\mathrm{i}$ and i is equal
1) zero
2) 1
3) -1
4) $2 \pi i$

Functions of Complex Variables and
 Complex Integration

26. Residue of $\frac{z^{2}}{z^{2}+\mathrm{a}^{2}}$ at $\mathrm{z}=\mathrm{al}$ is
1) $\frac{1}{2 a}$
2) i a
3) $\frac{\text { ia }}{2}$
4)2ai
27. The conditions $C R$ equations $f(z)=u+i v$ to be analytic are
1) $U_{x}=-V_{y}, V_{x}=U_{y}$
2) $U_{x}=V_{y}, V_{x}=-U_{y}$
3) $U_{x}=V_{x}, U_{y}=-V_{y}$
4) $U_{x}=U_{y}, V_{x}=-V_{y}$
28. If the real part of the analytic function $f(z)=u+i v$ is constant then
1) v is not constant
2) $f(z)$ is not a complex constant
3) v is a constant
4) $f(z)$ is equal to zero
29. The function $z \bar{z}$ is
1) analytic at $(1,1)$
2) no where analytic
3) analytic at $(-1,-1) 4)$ analytic in $(2,2)$
30. If $f(z)=u+i v$ is analytic then $f^{\prime}(z)=$
1) $u_{x}+i v_{y}$
2) $u_{y}+i v_{x}$
3) $u_{x}+i v_{x}$
4) $u_{x}+i v_{x}$
31. If $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is an analytic function and $\mathrm{v}=\mathrm{xy}$ then $\mathrm{f}(\mathrm{z})$ is equal to
1) $\frac{-z^{2}}{2}$
2) $z^{2}+z$
3) $\frac{z^{2}}{2}$
4) $z^{2}-z$
32. If $\mathrm{w}=\mathrm{P}(\mathrm{r}, \theta)+\mathrm{iQ}(\mathrm{r}, \theta)$ be a analytic function then
1) $\frac{\partial \mathrm{P}}{\partial \mathrm{r}}=\frac{\partial \mathrm{Q}}{\partial \theta}$
2) $\frac{\partial P}{\partial \theta}=\frac{\partial Q}{\partial r}$
3) $\frac{\partial P}{\partial r}-\frac{1}{r} \frac{\partial Q}{\partial \theta}$
4) $\frac{\partial P}{\partial r}=\frac{-1}{r} \frac{\partial Q}{\partial \theta}$
33. If $w=u(x, y)+i v(x, y)$ be an analytic function is equal to
1) $\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$
2) $\frac{\partial u}{\partial x}-i \frac{\partial v}{\partial y}$
3) $-\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$
4) $\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}$
34. If $f(z)=u+i v$ is an analytic function, then
1) only u is harmonic function
2) only v is harmonic function
3) both u and v are harmonic function
4) both u and v are not harmonic function
35. The value of $\int_{c} \frac{z^{2}}{x+3} d z$ where C is the circle $|z|=2$ is
1) 0
2) 4
3) -4
4) $-\frac{4}{5}$
36. The residue of the function $e^{1 / z}$ at the singular point $\mathrm{z}=0$ is
1) 0
2) -1
3) 1
4) ∞
37. Which one of the following is not an analytic function?
1) e^{z}
2) $\sin \mathrm{z}$
3) $\cos z$
4) $|z|^{2}$
38. If c is a real constant an analytic function whose real part xy is
1) $\frac{-i z^{2}}{2}+$ ic
2) $\frac{z^{2}}{2}+c$
3) $\frac{-z^{2}}{2}+$ ic
4) $\frac{-i z^{2}}{2}+i c$
39. The bilinear transformation which maps $\mathrm{z}=$ $1, i, \infty$ into $\mathrm{W}=\mathrm{i}, 1, \mathrm{o}$ is
1) $\frac{1}{x}$
2) $\frac{i}{z}$
3) iz
4) $\frac{1}{z i}$
40. If $w=u(x, y)+i v(x, y)$ is an analytic function of $z=x+i y$, then
1) $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial x}$ and $\frac{\partial u}{\partial y}=\frac{-\partial v}{\partial x}$
2) $\frac{\partial u}{\partial x}=\frac{-\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}$
3) $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial x}$ and $\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}$
4) $\frac{\partial u}{\partial x}=\frac{-\partial v}{\partial y}$ and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
41. Invariant points of a bilinear transformation $\mathrm{w}=-\frac{1+\mathrm{iz}}{1-\mathrm{iz}}$ is
1) $\frac{-1}{2}\{\sqrt{1+i} \pm 6 i\}$
2) $\frac{-1}{2}((1+i) \pm \sqrt{6 i})$
3) $\frac{1}{2}((1+i) \pm \sqrt{3+i})$
4) $\frac{-1}{2}(6 i \pm$ $\sqrt{3+\mathrm{i}})$
42. The critical points of the conformal transformation $\mathrm{w}=\mathrm{z}+\frac{1}{\mathrm{z}}$ are
1) 1 and 0
2) -1 and 0
3) 1 and -1
4) 1 and 1
43. For the function $f(z)=\frac{\frac{1}{e^{z-1}}}{(z-2)^{2}}$, the point $\mathrm{z}=1$ is
1) a simple pole
2) a multiple pole
3) a removable singularity
4) an essential singularity
44. The value of the integral $\int_{|z|=3} \frac{z^{3}+1}{(z-1)(z-2)} d z$ is
1) πi
2) $2 \pi i$
3) $6 \pi i$
4) $3 \pi i$
45. Which of the following is a harmonic function?
1) $e^{x} x$
2) $e^{x} \sin y$
3) $x^{2}+y^{2}$
4) $\sin x \cos y$
46. If $\mathrm{W}=\mathrm{u}+\mathrm{iv}$ is an analytic function of $\mathrm{z}=\mathrm{x}$ + iy then which of the following is not true?
1) $\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=0$
2) $\frac{d w}{d z}=\frac{\partial w}{\partial x}$
3) $\frac{d w}{d z}=-i \frac{\partial w}{\partial y}$
4) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$
47. The bilinear transformation which maps $\mathrm{z}=$ $1, i, \infty$ into $i, 1,0$ is
1) $\frac{1}{z}$
2) $\frac{i}{z}$
3) iz
4) $\frac{1}{\mathrm{zi}}$
48. The critical points of the transformation $\mathrm{w}=(\mathrm{z}-1)(\mathrm{z}-2)$
1) $z=1$
2) $z=2$
3) $z=\frac{3}{2}$
4) $\mathrm{z}=\frac{4}{5}$
49. If $f(z)=u+i v$ is an analytic function of z such that $u=x^{2}-y^{2}$, then the value of v is
1) $x y$
2) $2 x y$
3) -xy
4) $-2 x y$
50. If $w=f(z)=u+i v$ is an analytic function of $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ then which of the following is/are true?
1) $\frac{d w}{d z}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial y}$
2) $f^{\prime}(z)=\frac{\partial v}{\partial y}+i \frac{\partial v}{\partial x}$
3) $\frac{\partial w}{\partial y}=i \frac{\partial w}{\partial x}$
4) $\frac{\partial w}{\partial x}=-i \frac{\partial w}{\partial y}$
5) (a) only
6) (d) only
7) (b) and (d) only
8) (b) and (c) only
51. If c is a real constant on analytic function whose real part is xy is
1) $\frac{-i z^{2}}{2}+$ ic
2) $\frac{z^{2}}{2}+c$
3) $\frac{z^{2}}{2}+$ ic
4) $\frac{i z^{2}}{2}+c$
52. The bilinear transformation which maps $\mathrm{z}=$ $0,1, \infty$ onto $\mathrm{w}=-1,-\mathrm{i}, 1$ respectively is given by
1) $w=\frac{z}{z-i}$
2) $w=\frac{z}{z+i}$
$3 \mathrm{w}=\frac{\mathrm{z}-1}{\mathrm{z}+\mathrm{i}}$
3) $w=\frac{z+i}{z-i}$
53. $\int_{|x-1|-1} \frac{z^{2}+1}{z^{2}-1} d z=$
1) 0
2) 2π
3) $2 \pi \mathrm{i}$
4) $-2 \pi i$
54. In the Laurent series for $f(z)=\frac{1}{z-4}$ at centred at $z=1$, the coefficient of $(z-1)^{-2}$ is
1) 3
2) -3
3) 9
4) -9
55. $f(z)=e^{x} \cos y+i e^{x} \sin y$ is analytic
1) at the origin only
2) nowhere In the complex plane
3) everywhere In the complex plane
4) at all points on the real axis only
56. Given that $\mathrm{P}+\mathrm{Q}$ and $\mathrm{Q}-\mathrm{P}$ can be the real and imaginary parts of an analytic function

Functions of Complex Variables and
 Complex Integration

respectively, which of the following is an analytic function?

1) $(\mathrm{P}+\mathrm{Q})+\mathrm{i}(\mathrm{P}-\mathrm{Q})$
2) $(P-Q)+i(P+Q)$
3) $P-i Q$
4) $p+i Q$
57. The bilinear transformation $w=\frac{a z+b}{c z+d}$ is
1) not conformal anywhere
2) conformal everywhere except at one point
3) conformal everywhere
4) analytic everywhere
58. If C is the curve $16 x^{2}+y^{2}=1$ the value of $\int_{c} \frac{d z}{z^{2}+9}$ is
1) $\frac{\pi}{3}$
2) $\frac{-\pi}{3}$
3) 0
4) $\frac{1}{3} \tan ^{-1}\left(\frac{2 \pi}{3}\right)$
59. For the function $e^{1 / z}$ the point $z=0$ is
1) a simple pole
2) a pole of infinite order
3) an essential singularity
4) a regular point
60. Which of the following is not an analytic function?
1) e^{z}
2) $\sin \mathrm{Z}$
3) $\cosh z$
4) $|z|^{2}$
61. If $w=u(x, y)+i v(x, y)$ is analytic, then $\left|\frac{\mathrm{dw}}{\mathrm{dz}}\right|^{2}=$
1) $\frac{\partial(u, v)}{\partial(\mathrm{x}, \mathrm{y})}$
2) $\frac{\partial(x, y)}{\partial(x, y)}$
3) $\frac{\partial(\mathrm{v}, \mathrm{u})}{\partial(\mathrm{x}, \mathrm{y})}$
4) $\frac{\partial(y, x)}{\partial(u, v)}$
62. Given that $u=e^{x} \sin y$ as the real part of an analytic function, the corresponding imaginary part is
1) $e^{y} \sin x$
2) $-e^{x} \cos y+i c$ where c is a real constant
3) $-e^{x} \cos y+c^{2}$ where c is a real constant
4) $e^{x} \cos (x y)$
63. The transformation $w=z^{2}$ transforms the line $\mathrm{y}=1$ into
1) a circle, centre $(0,1)$ and radius 1
2) a straight line $\frac{y}{x}=1$
3) a hyperbola with vertex $(1,0)$
4) a parabola with vertex at $(-1,0)$
64. The value of the integral $\int_{c} \frac{e^{z} d z}{z(z-\pi)}$ where c is
the circle $|z-1|=2$ is
1) 0
2) $4 i$
3) -2 i
4) 2 i

DETAILED SOLUTIONS

1. (4)

The mapping $f(z)$ is analytic and $f^{\prime}(z) \neq 0$ then the mapping $w=f(z)$ is conformal.
$f(z)=z^{2}-2 z-3$
$f^{\prime}(z)=2 z-2$
$\mathrm{f}^{\prime}(\mathrm{z})=0$
$2 \mathrm{z}-2=0$
$2(\mathrm{z}-\mathrm{l})=0$
$\mathrm{z}=1$
$\therefore \mathrm{f}^{\prime}(\mathrm{l})=0$
This implies $w=f(z)$ is not conformal at $\mathrm{z}=1$.
2. (2)

If $\mathrm{f}(\mathrm{z})=\frac{\phi(\mathrm{z})}{\psi(\mathrm{z})}$
and $\psi(a)=0 \phi(a) \neq 0$
then
Residue (at $\mathrm{z}=\mathrm{a}) \frac{\phi(\mathrm{a})}{\psi^{\prime}(\mathrm{a})}$
consider $\phi(a)=\frac{1+e^{z}}{z \cos z+\sin z}$
$\phi(\mathrm{z})=1+\mathrm{e}^{\mathrm{z}}$
$\phi(\mathrm{z})==\mathrm{zcos}+\sin \mathrm{z}$
$\phi(0)=1+\mathrm{e}^{0}=2$
$\psi(0)=0+0=0$
Now $\psi^{\prime}(\mathrm{z})=\cos \mathrm{z}-\mathrm{z} \sin \mathrm{z}+\cos \mathrm{z}$
$=2 \cos \mathrm{z}-\mathrm{z} \sin \mathrm{z}$
Residue (at $\mathrm{z}=0$)
$=\frac{\phi(0)}{\psi^{\prime}(0)}$
$=\frac{1+\mathrm{e}^{0}}{2 \cos 0-0 \sin 0}$
$=\frac{2}{2}$
$=1$
3. (1)

Cauchy's theorem:

If a function $f(z)$ is analytic at all points inside
and on a closed contour C, then
$\int_{c} f(z) d z=0$
let $f(z)=\frac{3 z^{2}+7 z+1}{z+1}$
$f(z)$ is not analytic at $z=-1$
but $\mathrm{z}=-1$ lies outside the circle $|\mathrm{z}|=0.5$
$\therefore \mathrm{f}(\mathrm{z})$ is analytic inside and on $|\mathrm{z}|=0.5$
\therefore By Cauchy's theorem $\int_{\mathrm{c}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=0$
4. (3)
$\mathrm{f}(\mathrm{z})=\mathrm{ze}^{\mathrm{x}^{\frac{1}{2}}}$
$=z\left[1+\frac{\left(\frac{1}{z^{2}}\right)}{1!}+\frac{\left(\frac{1}{z^{2}}\right)^{2}}{2!}+\frac{\left(\frac{1}{z^{2}}\right)^{3}}{3!}+\cdots\right]$
$=\mathrm{z}+\frac{1}{\mathrm{z}}+\frac{1}{2 \mathrm{z}^{3}}+\frac{1}{6 \mathrm{z}^{5}} \cdots$
The principal part powers of $\left(\frac{1}{z-0}\right)$ contains infinite number of levins. Therefore $\mathrm{z}=0$ is an essential singularity.
5. (2)

Required analytic function is
$\mathrm{f}(\mathrm{z})=\mathrm{z}^{4}$
6. (1)

Statements (a) and (b are true
$C-R$ equation is
$u_{x}=v_{y} ; u_{y}=-v_{x}$
\therefore Statement (c) is not correct
Given $f(z)=u+i v$ is an analytic function
$\therefore \mathrm{u}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}} ; \mathrm{u}_{\mathrm{y}}=-\mathrm{v}_{\mathrm{x}}$
Consider $\overline{\mathrm{f}(\mathrm{z})}=\mathrm{u}-\mathrm{iv}$
$=P+i Q$
where $\mathrm{P}=\mathrm{U}$; $\mathrm{Q}=-\mathrm{V}$
Now $P_{x}=u_{x} ; Q_{x}=-v_{x}$
$P_{y}=u_{y} ; Q_{y}=-v_{y a}$
by (1)
$P_{x} \neq Q_{y}$ and
$P_{y} \neq-Q_{x}$
$\therefore \overline{\mathrm{f}} \mathrm{z})$ does not satisfy C-R equation
$\therefore \overline{\mathrm{f}(\mathrm{z})}=\mathrm{u}-\mathrm{iv}$ is not analytic
\therefore Statement (d) is not true
7. (4)

Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
and $w=u+i v$
$\mathrm{w}=\frac{1}{\mathrm{z}}$
$\Rightarrow \mathrm{z}=\frac{1}{\mathrm{w}}$
$\Rightarrow \mathrm{x}+\mathrm{iy}=\frac{1}{\mathrm{u}+\mathrm{iv}}$
$=\frac{1}{u+i v} \times \frac{u-i v}{u-i v}$
$=\frac{u-i v}{u^{2}+v^{2}}$
$=\frac{\mathrm{u}}{\mathrm{u}^{2}+\mathrm{v}^{2}}-\mathrm{i} \frac{\mathrm{v}}{\mathrm{u}^{2}+\mathrm{v}^{2}}$
$\therefore \mathrm{x}=\frac{\mathrm{u}}{\mathrm{u}^{2}+\mathrm{v}^{2}} ; \mathrm{v}=\frac{-\mathrm{v}}{\mathrm{u}^{2}+\mathrm{v}^{2}}$
Given straight line is
$2 x+3 y+5=0$
$\Rightarrow 2\left(\frac{u}{u^{2}+v^{2}}\right)+3\left(\frac{-v}{u^{2}+v^{2}}\right)+5=0$
$\Rightarrow 5\left(u^{2}+v^{2}\right) 2 u-3 v=0$
\therefore Image is a circle.
8. (3)

By Cauchy's integral formula,
if $\mathrm{z}_{0} \in \mathrm{C}$ then
$\mathrm{f}^{\prime}\left(\mathrm{z}_{0}\right)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathrm{c}} \frac{\mathrm{f}(\mathrm{z}) \mathrm{dz}}{\left(\mathrm{z}-\mathrm{z}_{0}\right)^{2}}$
consider $\int_{c} \frac{\left(z^{2}+5\right) d z}{(z-1)^{2}}$
$f(z)=z^{2}+5$
$f^{\prime}(\mathrm{z})=2 \mathrm{z}$
$f^{\prime}(1)=2(1)=2$
By (1)
$\mathrm{f}^{\prime}(1)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathrm{c}} \frac{\left(\mathrm{z}^{2}+5\right) \mathrm{dz}}{(\mathrm{z}-1)^{2}}$
$\Rightarrow \int_{c} \frac{\left(z^{2}+5\right) d z}{(z-1)^{2}}=2 \pi i f^{\prime}(1)$
$=2 \pi i \times 2$
$=4 \pi \mathrm{i}$
9. (1)

Solution:

Residue of $f(z)$ at a simple pole $z=a$
is $\lim _{x \rightarrow 0}(z-a) f(z)$
For $f(z)=\frac{z^{3}+5 z-7}{(z-2)(z+3)^{2}}$
$\mathrm{z}=2$ is a simple pote and
$z=-3$ is a pole of order 2
\therefore Residue at the simple pole $\mathrm{z}=2$ is
$\lim _{x \rightarrow 2}(z-2) \frac{z^{3}+5 z-7}{(z-2)(z+3)^{2}}$
$=\lim _{x \rightarrow 2} \frac{z^{3}+5 z+7}{(z+3)^{2}}$
$=\frac{8+10+7}{25}=\frac{25}{25}$
$=1$
10. (1)

If $\mathrm{w}=\mathrm{P}(\mathrm{r}, \theta)+\mathrm{iQ}(\mathrm{r}, \theta)$
is analytic, then polar form of $\mathrm{C}-\mathrm{R}$ equations are

$$
\begin{gathered}
\frac{\partial \mathrm{P}}{\partial \mathrm{r}}=\frac{1}{\mathrm{r}} \frac{\partial \mathrm{Q}}{\partial \theta} \\
\frac{\partial \mathrm{Q}}{\partial \mathrm{r}}=\frac{-1}{\mathrm{r}} \frac{\partial \mathrm{P}}{\partial \theta}
\end{gathered}
$$

11. (3)
$\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ is an analytic function, then u and v satisfy Laplace equation.
12. (4)
$\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{C}_{1}$ and $\mathrm{v}(\mathrm{x}, \mathrm{y})=\mathrm{c}_{2}$
are orthogonal if prouduct of their slopes $=-$ 1
i.e., $\mathrm{m}_{1} \mathrm{~m}_{2}=-1$
13. (4)
$\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$
Given imaginary part $=$ constant
$\Rightarrow \mathrm{v}=$ constant
$\Rightarrow \frac{\partial v}{\partial \mathrm{x}}=0 ; \frac{\partial \mathrm{v}}{\partial \mathrm{y}}=0$
by C-R equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=0
$$

and $\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}=0$
$\Rightarrow \frac{\partial \mathrm{u}}{\partial \mathrm{x}}=0$
and $\frac{\partial u}{\partial v}=0$
$\Rightarrow \mathrm{u}$ is constant.
14. (3)
$\mathrm{f}^{\prime}(\mathrm{z})=\mathrm{e}^{-\mathrm{i} \theta}\left[\frac{\partial \mathrm{P}}{\partial \mathrm{r}}+\mathrm{i} \frac{\partial \mathrm{Q}}{\partial \mathrm{r}}\right]$
15. (2)

The necessary and sufficient conditions for the function
$f(z)=u(r, \theta)+i v(r, \theta)$ to be analytic is

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{r}}=\frac{1}{\mathrm{r}} \frac{\partial \mathrm{v}}{\partial \theta}
$$

and $\frac{\partial v}{\partial r}=\frac{-1}{r} \frac{\partial u}{\partial \theta}$

Functions of Complex Variables and Complex Integration

$\Rightarrow \mathrm{u}_{\mathrm{r}}=\frac{1}{\mathrm{r}} \mathrm{v}_{\theta}$
and $v_{r}=\frac{-1}{r} v_{\theta}$
i.e. $u_{\theta}=-r v_{r}$
16. (4)

Let $f(z)=u+i v$
$\mathrm{f}(\mathrm{z})=\mathrm{z}+2 \overline{\mathrm{z}}$
$=(x+i y)+2(x-i y)$
$=3 \mathrm{x}-\mathrm{iy}$
$\Rightarrow \mathrm{u}=3 \mathrm{x} ; \mathrm{v}=-\mathrm{y}$
$\mathrm{u}_{\mathrm{x}}=3 ; \mathrm{u}_{\mathrm{y}}=0$
$\mathrm{v}_{\mathrm{x}}=0 ; \mathrm{v}_{\mathrm{y}}=-1$
Clearly $\mathrm{u}_{\mathrm{x}} \neq \mathrm{v}_{\mathrm{y}}$
So C.R. equations are not satisfied.
This implies $f(z)$ is not analytic everywhere in the complex plane.
17. (1)

The complex potential
$\mathrm{f}(\mathrm{z})=\phi+\mathrm{i} \psi$
Given $\psi=\frac{-\mathrm{y}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$
$\psi_{\mathrm{x}}=\frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) 0+\mathrm{y} \cdot 2 \mathrm{x}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}$
$=\frac{2 y x}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}$
$\psi_{\mathrm{x}}(\mathrm{z}, 0)=0$
$\psi_{y}=\frac{\left(x^{2}+y^{2}\right)(-1)+2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$
$=\frac{-x^{2}-y^{2}+2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$
$=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}$
$\psi_{y}(\mathrm{z}, 0)=\frac{\mathrm{z}^{2}}{\mathrm{z}^{4}}=\frac{-1}{\mathrm{z}^{2}}$
\therefore By Miline - Thomdon method
$\mathrm{f}(\mathrm{z})=\int\left[\psi_{\mathrm{y}}(\mathrm{z}, 0)+\mathrm{i} \psi_{\mathrm{x}}(\mathrm{z}, 0)\right] \mathrm{dz}$
$=\int\left(\frac{-1}{\mathrm{z}^{2}}+\mathrm{i} 0\right) \mathrm{dz}$
$=-\int \frac{\mathrm{dz}}{\mathrm{z}^{2}}=-\left(\frac{-1}{\mathrm{z}}\right)$
$=\frac{1}{\mathrm{z}}$
$=\frac{1}{x+i y}$
$=\frac{1}{x+i y} \times \frac{x-\mathrm{iy}}{\mathrm{x}-\mathrm{i} y}$
$=\frac{x-i y}{x^{2}+y^{2}}$
$\Rightarrow \mathrm{f}(\mathrm{z})=\left(\frac{\mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}}\right)+\mathrm{i}\left(\frac{-\mathrm{y}}{\mathrm{x}^{2}+\mathrm{y}^{2}}\right)$
\therefore The velocity potential
$\phi=\frac{\mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$
18. (1)

Given circle $|\mathrm{z}|=\frac{1}{2} \Rightarrow \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}=\frac{1}{2}$

$$
\Rightarrow x^{2}+y^{2}=\left(\frac{1}{2}\right)^{2}
$$

This is a circle with centre at origin and radius $=\frac{1}{2}$

Consider $\int_{c} \frac{2 \mathrm{z}+1}{\mathrm{z}^{2}+\mathrm{z}} \mathrm{dz}$
Equating the denominator to zero
$z^{2}+z=0$
$\Rightarrow \mathrm{z}(\mathrm{z}+1)=0$
$\Rightarrow \mathrm{z}=0,-1$
The point $\mathrm{z}=0$ lies inside the circle.
Let $f(z)=\frac{2 z+1}{z^{2}+z}$
Residue of $f(z)$ at $z=0$
$=\lim _{x \rightarrow 0}(z-0) f(z)$
$=\lim _{x \rightarrow 0} \mathrm{z} \cdot \frac{2 \mathrm{z}+1}{\mathrm{z}(\mathrm{z}+1)}$
$=\lim _{z \rightarrow 0} \frac{2 z+1}{z+1}$
$=1$
By Cauchy's residue theorem
$\int_{c} f(z) d z=2 \pi i$ [sum of residues of points inside c]
$\mathrm{z}=0$ is the only point inside c
$\therefore \int_{\mathrm{c}} \frac{2 \mathrm{z}+1}{\mathrm{z}^{2}+\mathrm{z}} \mathrm{dz}=2 \pi \mathrm{i}($ Residue at $\mathrm{z}=0$)
$=2 \pi \mathrm{i} \times 1=2 \pi \mathrm{i}$
19. (4)
$\cos \left(\frac{1}{z}\right)=1-\frac{\left(\frac{1}{z}\right)^{2}}{2!}+\frac{\left(\frac{1}{z}\right)^{4}}{4!}-\ldots$.
$=1-\frac{1}{2 \mathrm{z}^{2}}+\frac{1}{24 \mathrm{z}^{4}}-\cdots$
$\mathrm{z} \cos \cos \left(\frac{1}{\mathrm{z}}\right)=\mathrm{z}-\frac{1}{2 \mathrm{z}}+\frac{1}{24 \mathrm{z}^{2}}-\ldots$.
Residue of $z=0$
$=$ coefficient of $\frac{1}{z-0}=\frac{1}{z}$
$=\frac{-1}{2}$
20. (3)
clearly $\frac{1}{z}=\frac{1}{x+i y}$
$=\frac{1}{x+i y} \times \frac{x-i y}{x-i y}$
$=\frac{x-i y}{x^{2}+y^{2}}$
$=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}$
$\therefore \operatorname{Re}\left(\frac{1}{z}\right)=\frac{x}{x^{2}+y^{2}}$
$=\frac{1}{\mathrm{z}}$

Method: 2

$\mathrm{u}=\frac{\mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\frac{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-\mathrm{x} \cdot 2 \mathrm{x}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}
$$

$=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}$
$\frac{\partial u}{\partial x}(z, 0)=\frac{0^{2}-z^{2}}{\left(z^{2}+0^{2}\right)^{2}}=\frac{-z^{2}}{z^{4}}=\frac{-1}{z^{2}}$
Now,
$\frac{\partial u}{\partial y}=\frac{0-x \cdot 2 \mathrm{y}}{\left(\mathrm{z}^{2}+0^{2}\right)^{2}}=\frac{-2 \mathrm{xy}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}$
$\frac{\partial \mathrm{u}}{\partial \mathrm{y}}(\mathrm{z}, 0)=\frac{-2 \cdot \mathrm{z} .0}{\left(\mathrm{z}^{2}+0^{2}\right)^{2}}$
$=0$

By Milne - Thompson method

$$
\begin{aligned}
& \mathrm{f}(\mathrm{z})=\int\left[\frac{\partial \mathrm{u}}{\partial \mathrm{x}}(\mathrm{z}, 0)-\mathrm{i} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}(\mathrm{z}, 0)\right] \mathrm{dz} \\
& =\int\left(\frac{-1}{\mathrm{z}^{2}}-\mathrm{i} 0\right) \mathrm{dz} \\
& =-\int \frac{1}{\mathrm{z}^{2}} \mathrm{dz}=\frac{1}{\mathrm{z}} \\
& \therefore \mathrm{f}(\mathrm{z})=\frac{1}{\mathrm{z}}
\end{aligned}
$$

21. (4)

Cauchy - Riemann equations of

$$
\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{r}, \theta)+\mathrm{iv}(\mathrm{r}, 0)
$$

$$
\text { is } \frac{\partial \mathrm{u}}{\partial \mathrm{r}}=\frac{1}{\mathrm{r}} \frac{\partial \mathrm{v}}{\partial \theta}
$$

$$
\text { and } \frac{\partial v}{\partial r}=\frac{1}{r} \frac{\partial u}{\partial \theta}
$$

$$
\Rightarrow r u_{r}=v_{0}
$$

$$
\text { and } \mathrm{rv}_{\mathrm{r}}=-\mathrm{u}_{\theta}
$$

22. (4)
$w=f(z)$ is analytic then it is independent of $\overline{\mathrm{Z}}$
$\therefore \frac{\partial \mathrm{w}}{\partial \overline{\mathrm{z}}}=0$
23. (2)

Let $u=2 x-x^{2}+m y^{2}$

$$
\frac{\partial u}{\partial \mathrm{x}}-2-2 \mathrm{x}
$$

$\frac{\partial^{2} u}{\partial x^{2}}=-2$

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{y}}=2 \mathrm{my}
$$

$\frac{\partial^{2} u}{\partial y^{2}}=2 \mathrm{~m}$
Given u is harmonic

$$
\frac{\partial^{2} u}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{y}^{2}}=0
$$

$\Rightarrow-2+2 \mathrm{~m}=0$
$\Rightarrow \mathrm{m}=1$
24. (3)

$$
\begin{aligned}
& w=z+2+3 i \\
& z=w-2-3 i \\
& |z|=2
\end{aligned}
$$

$\Rightarrow|\mathrm{w}-2-3 \mathrm{i}|=2$
$\Rightarrow|w-(2+31)|=2$
25. (1)

By Cauchy - Goursat theorem if f is analytic function in the region enclosed by the curve C , then
$\int_{c} f(z) d z=0$
$f(z)=z+1$ is analytic in every region
$\therefore \mathrm{f}(\mathrm{z})=\mathrm{z}+1$ is analytic inside C
$\therefore \int_{c}(\mathrm{z}+1) \mathrm{dz}=0$
26. (3)

Result: Residue of $f(z)$ at the pole $z=a$ is \lim
$x \rightarrow 0(z-a) f(z)$
Let $f(z)=\frac{z^{2}}{z^{2}+a^{2}}$
$=\frac{z^{2}}{(z+a i)(z-a i)}$
Residue at $\mathrm{z}=$ ai
$=\lim _{z \rightarrow a i}(z-a i) f(z)$
$=\lim _{z \rightarrow a i}(z-a i) \frac{z^{2}}{(z+a i)(z-a i)}$
$=\lim _{z \rightarrow a i} \frac{z^{2}}{(z+a i)}$
$=\frac{(a i)}{a i+a i}{ }^{2}$
$=\frac{(\mathrm{ai})^{2}}{2 \mathrm{ai}}$
$=\frac{a \mathrm{i}}{2}$
27. (2)

CR equations are
$u_{x}=v_{y} ; u_{y}=-v_{x}$
i.e. $u_{x}=v_{y}, v_{x}=-u_{y}$
28. (3)

By CR equations
$\mathrm{u}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}} ; \mathrm{u}_{\mathrm{y}}=-\mathrm{v}_{\mathrm{x}}$
$\therefore \mathrm{v}_{\mathrm{m}}$
since u is constant
$\Rightarrow \mathrm{u}_{\mathrm{x}}=0$ and $\mathrm{u}_{\mathrm{y}}=0$
By CR equations
$0=u_{x}=v_{y}$
$\Rightarrow \mathrm{v}_{\mathrm{y}}=0$
Also
$0=u_{y}=-v_{x}$
$\Rightarrow \mathrm{v}_{\mathrm{x}}=0$
By (1) and (2)
v is a constant.
29. (2)

Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
then $\bar{z}=x-i y$
$\mathrm{f}(\mathrm{z})=\mathrm{z} \overline{\mathrm{Z}}$
$=(x+i y)(x-i y)$
$=x^{2}+y^{2}=u+i v$
$\Rightarrow u=x^{2}+y^{2}$
$\mathrm{v}=0$
$\Rightarrow \mathrm{u}_{\mathrm{x}}=\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=2 \mathrm{x}$
$u_{y}=\frac{\partial u}{\partial y}=2 y$
$\mathrm{v}_{\mathrm{x}}=\frac{\partial \mathrm{v}}{\partial \mathrm{x}}=0$
$\mathrm{v}_{\mathrm{y}}=\frac{\partial \mathrm{v}}{\partial \mathrm{y}}=0$
Clearly $\mathrm{u}_{\mathrm{x}} \neq \mathrm{v}_{\mathrm{y}}$
$\mathrm{u}_{\mathrm{y}} \neq \mathrm{v}_{\mathrm{x}}$
\therefore C.R equations are not satisfied.
$\therefore \mathrm{f}(\mathrm{z})$ is nowhere analytic.
30. (3)

If $f(z)$ is analytic
then $\mathrm{f}^{\prime}(\mathrm{i})=\mathrm{u}_{\mathrm{x}}+\mathrm{iv}_{\mathrm{x}}$
$=\mathrm{v}_{\mathrm{y}}-\mathrm{iu}_{\mathrm{y}}$
31. (3)

Method -1

$$
v=x y
$$

$$
\frac{\partial v}{\partial x}=y ; \frac{\partial v}{\partial y}=x
$$

Follow us on FB for exam Updates: ExamsDaily

Functions of Complex Variables and
 Complex Integration

$$
\frac{\partial \mathrm{v}}{\partial \mathrm{x}}(\mathrm{z}, 0)=0 ; \frac{\partial \mathrm{v}}{\partial \mathrm{y}}(\mathrm{z}, 0)=\mathrm{z}
$$

By Milne - Thompson method
$f(z)=\int\left[\frac{\partial v}{\partial y}(z, 0)+i \frac{\partial v}{\partial x}(z, 0)\right] d z$
$\int(z+i 0) d z$
$=\frac{\mathrm{z}^{2}}{2}$
Method : 2
From the given choices
if $f(z)=\frac{z^{2}}{2}$
then $f(z)=\frac{z^{2}}{2}=\frac{(x+i y)^{2}}{2}$
$=\frac{x^{2}-y^{2}+2 i x y}{2}$
$=\frac{x^{2}-y^{2}}{2}+i 2 x y$
$=\mathrm{u}+\mathrm{iv}$
$\Rightarrow \mathrm{v}=\mathrm{xy}$
So required analytic function
$\mathrm{f}(\mathrm{z})=\frac{\mathrm{z}^{2}}{2}$
32. (3)

Let $\mathrm{f}(\mathrm{z})=\mathrm{P}(\mathrm{r}, \theta)+\mathrm{i}(\mathrm{Q}(\mathrm{r}, \theta)$
then Polar form of Cauchy-Riemann equations are

$$
\begin{aligned}
& \frac{\partial \mathrm{P}}{\partial \mathrm{r}}=\frac{1}{\mathrm{r}} \frac{\partial \mathrm{Q}}{\partial \theta} \\
& \frac{\partial \mathrm{Q}}{\partial \mathrm{r}}=\frac{1}{\mathrm{r}} \frac{\partial \mathrm{P}}{\partial \theta}
\end{aligned}
$$

33. (3)

Result :
If $z=x+i y$ and $w=f(z)$
then $\frac{\mathrm{dw}}{\mathrm{dz}}=\frac{\partial \mathrm{w}}{\partial \mathrm{x}}$
$\therefore \frac{\mathrm{dw}}{\mathrm{dx}}=\frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{i} \frac{\partial v}{\partial x}$
34. (3)

Result:
If $f(z)=u+i v$ is an analytic function then both u and v are harmonic functions.
35. (1)

Cauchy's Theorem :

If a function $f(z)$ is analytic at all points inside and on a closed curve C
then $\int_{c} f(z) d z=0$
Let $f(z)=\frac{z^{2}}{z+3}$
clearly $f(z)$ is not analytic at $z=-3$
But this point lies outside the circle $|z|=2$
Hence, $f(z)$ is analytic at all points interior and on
the closed curve C
Where C is $|\mathrm{z}|=2$
Hence, by Cauchy's theorem
$\int_{c} f(z) d z=0$
i.e., $\int_{c} \frac{z^{2}}{z+3} d z=0$
36. (2)

$$
\begin{aligned}
& \quad \mathrm{e}^{\mathrm{t} / \mathrm{z}}=1+\frac{\left(\frac{1}{\mathrm{z}}\right)}{1!}+\frac{\left(\frac{1}{\mathrm{z}}\right)^{2}}{2!}+\frac{\left(\frac{1}{\mathrm{z}}\right)^{3}}{3!} \\
& =1+\frac{1}{\mathrm{z}}+\frac{1}{2 \mathrm{x}^{2}}+\frac{1}{6 \mathrm{z}^{2}}+\cdots \\
& \text { Residue of } \mathrm{e}^{\mathrm{t} / \mathrm{z}} \text { at } \mathrm{z}=0 \\
& =\text { coefficient of } \frac{1}{(\mathrm{z}-0)}=\frac{1}{\mathrm{z}}
\end{aligned}
$$

in the series expansion of $\mathrm{e}^{\mathrm{t} / \mathrm{z}}=1$
37. (4)

Let $\mathrm{f}(\mathrm{z})=|\mathrm{z}|^{2}$
where $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
$|z|^{2}=x^{2}+y^{2}$
then $\mathrm{f}(\mathrm{z})=|\mathrm{z}|^{2}$
$=x^{2}+y^{2}$
$=\left(x^{2}+y^{2}\right)+i 0$

Follow us on FB for exam Updates: ExamsDaily

Functions of Complex Variables and
 Complex Integration

Let $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$
then $u=x^{2}+y^{2} ; v=0$

$$
\begin{gathered}
\frac{\partial u}{\partial x}=2 x ; \frac{\partial u}{\partial y}=2 y \\
\frac{\partial v}{\partial x}=0 ; \frac{\partial v}{\partial y}=0
\end{gathered}
$$

$\therefore \frac{\partial \mathrm{u}}{\partial \mathrm{x}} \neq \frac{\partial \mathrm{v}}{\partial \mathrm{y}}$
and $\frac{\partial u}{\partial y} \neq \frac{\partial v}{\partial x}$
C.R. equation is not satisfied So $f(z)=|z|^{2}$ is not analytic.
38. (1)

If $f(x)=u+i v=-\frac{i z^{2}}{2}+i c$
then
$\mathrm{f}(\mathrm{z})=\frac{-\mathrm{i}(\mathrm{x}+\mathrm{iy})^{2}}{2}+\mathrm{ic}$
$=\frac{-\mathrm{i}\left(\mathrm{x}^{2}-\mathrm{y}^{2}+2 \mathrm{ixy}\right)}{2}+\mathrm{ic}$
$=x y+i\left[\frac{y^{2}-x^{2}}{2}\right]+c$
\therefore if $\mathrm{f}(\mathrm{z})=\frac{-\mathrm{iz}^{2}}{2}+$ ic
Then, the real part is $x y$
39. (2)

If $w=\frac{i}{z}$ then
when $\mathrm{z}=1, \mathrm{w}=\frac{\mathrm{i}}{1}=\mathrm{i}$
when $z=i, w=\frac{i}{i}=1$
when $\mathrm{z}=\infty, \mathrm{w}=\frac{\mathrm{i}}{\infty}=0$
\therefore Required bilinear transform is $\mathrm{w}=\frac{\mathrm{i}}{\mathrm{z}}$
40. (1)

By Cauchy - Reimann equations if $w=u+$ iv is an analytic function then,
$\frac{\partial u}{\partial \mathrm{x}}=\frac{\partial \mathrm{v}}{\partial \mathrm{x}}$ and

$$
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

41. (2)

Invariant points are given by

$$
\begin{aligned}
& \mathrm{z}=\frac{1+\mathrm{iz}}{1-\mathrm{iz}} \\
& \Rightarrow 1+\mathrm{iz}=\mathrm{z}(1-\mathrm{iz}) \\
& \Rightarrow 1+\mathrm{iz}=\mathrm{z}-\mathrm{iz}^{2} \\
& \Rightarrow \mathrm{iz}^{2}+\mathrm{iz}-\mathrm{z}+\mathrm{l}=0 \\
& \Rightarrow \mathrm{iz}^{2}+\mathrm{z}(\mathrm{i}-1)+1=0 \\
& \therefore \mathrm{z}=\frac{-(\mathrm{i}-1) \pm \sqrt{(\mathrm{i}-1)^{2}-4 \mathrm{i}}}{2 \mathrm{i}} \\
& =\frac{-(\mathrm{i}-1) \pm \sqrt{-1+1-2 \mathrm{i}-4 \mathrm{i}}}{2 \mathrm{i}} \\
& =\frac{1}{2}\left[\frac{-(\mathrm{i}-1) \pm \sqrt{-6 \mathrm{i}}}{\mathrm{i}}\right] \\
& =\frac{1}{2}[-(\mathrm{i}-1) \times(-\mathrm{i}) \pm(-\mathrm{i}) \sqrt{-6 \mathrm{i}}] \\
& \quad\left(\because \frac{1}{\mathrm{i}}=-\mathrm{i}\right) \\
& =-\frac{1}{2}\left[\left(-\mathrm{i}^{2}+\mathrm{i}\right) \pm \sqrt{\mathrm{i}^{2}(-6 \mathrm{i})}\right] \\
& =-\frac{1}{2}[(1+\mathrm{i}) \pm \sqrt{6 \mathrm{i}}]
\end{aligned}
$$

42. (1)

Critical points are given by $\frac{\mathrm{dw}}{\mathrm{dz}}=0$ and
$\frac{\mathrm{d} w}{\mathrm{dz}}=\infty$
$\mathrm{w}=\mathrm{z}+\frac{1}{\mathrm{z}}$
$\frac{\mathrm{dw}}{\mathrm{dz}}=1-\frac{1}{\mathrm{z}^{2}}$
$\frac{\mathrm{dw}}{\mathrm{dz}}=0 \Rightarrow 1-\frac{1}{\mathrm{z}^{2}}=0$
$\Rightarrow \mathrm{z}^{2}=1$
$\Rightarrow \mathrm{z}=1$
$\frac{\mathrm{dw}}{\mathrm{dz}}=\infty \Rightarrow 1-\frac{1}{\mathrm{z}^{2}}=\infty$
$\Rightarrow \frac{1}{\mathrm{z}^{2}}=\infty$
$\Rightarrow \mathrm{z}=0$
$\therefore 1$ and 0 are the critical points.
43. (4)

$$
\begin{gathered}
\frac{1}{(z-2)} \mathrm{e}^{\frac{1}{z-1}} \\
\frac{1}{(\mathrm{z}-2)^{2}}\left[1+\frac{1}{(\mathrm{z}-1)}+\frac{1}{2!(\mathrm{z}-1)^{2}}\right. \\
\left.+\frac{1}{3!(\mathrm{z}-1)^{3}}+\cdots\right]
\end{gathered}
$$

Follow us on FB for exam Updates: ExamsDaily

The principal part contains infinite number of terms. So, $\mathrm{z}=1$ is an essential singularity.
44. (3)

Cauchy's Residue theorem :
$\int_{c} f(z) d z=2 \pi i \times$ sum of all residues of $f(z)$ inside C
Let $f(z)=\frac{z^{2}+1}{(z-1)(z-2)}$

Poles of $f(z)$ are $z=1$ and $z=2$
Clearly $\mathrm{z}=1$ and $\mathrm{z}=2$ lies inside the circle $|z|=3$
Residue of $f(z)$ at $z=1$
$=\operatorname{it~}_{z \rightarrow 1}(z-1) f(z)$
$=\operatorname{it}_{z \rightarrow 1}(z-1) \frac{z^{2}+1}{(z-1)(z-2)}$
$=\frac{1+1}{1-2}=\frac{2}{-1}$
Residue at $\mathrm{z}=2$
$=\operatorname{it~}_{z \rightarrow 2}(z-2) f(z)$
$=\operatorname{it}_{z \rightarrow 2}(\mathrm{z}-2) \frac{\left(\mathrm{z}^{2}+1\right)}{(\mathrm{z}-1)(\mathrm{z}-2)}$
$=\frac{4+1}{2-1}=5$
By Cauchy Residue theorem
$\therefore \int_{\mathrm{c}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=2 \pi \mathrm{i} \times$ sum of residues inside $|z|=3$
$=2 \pi i \times(-2+5)$
$=6 \pi \mathrm{i}$
$\therefore \int_{|x|=3} \frac{\mathrm{z}^{2}+1}{(\mathrm{z}-1)(\mathrm{z}-2)}=6 \pi \mathrm{i}$
45. (2)

If $\mathrm{z}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{ydz}$
then $\frac{\partial z}{\partial x}=e^{x} \sin y$
$\frac{\partial^{2} \mathrm{z}}{\partial \mathrm{x}^{2}}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y}$
$\frac{\partial z}{\partial y}=e^{x} \cos y$
$\frac{\partial^{2} z}{\partial y^{2}}=e^{x} \sin y$
$\therefore \frac{\partial^{2} \mathrm{z}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{z}}{\partial \mathrm{y}^{2}}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y}-\mathrm{e}^{\mathrm{x}} \sin \mathrm{y}=0$
$\therefore \mathrm{e}^{\mathrm{x}} \sin \mathrm{y}$ is a harmonic function
46. (1)
$\frac{\partial^{2} \mathrm{w}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{w}}{\partial \mathrm{y}^{2}}=0$ is not true
47. (2)

If $w=\frac{i}{z}$ then

z	$w=\frac{i}{z}$
1	i
i	1
∞	0

$\therefore \mathrm{w}=\frac{\mathrm{i}}{\mathrm{z}}$ is the required transform.
48. (3)
$\mathrm{w}=\mathrm{z}^{2}-3 \mathrm{z}+2$
$\frac{\mathrm{dw}}{\mathrm{dz}}=2 \mathrm{z}-3$
Critical points is given by
$\frac{\mathrm{dw}}{\mathrm{dz}}=0$
$\Rightarrow 2 \mathrm{z}-3=0$
$\Rightarrow \mathrm{z}=\frac{3}{2}$
49. (2)
$u=x^{2}-y^{2}$

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=2 x ; \frac{\partial u}{\partial x}(z, 0)=2 z \\
& \frac{\partial u}{\partial y}=-2 y ; \frac{\partial u}{\partial y}(z, 0)=0
\end{aligned}
$$

By Milne Thompson method analytic function
f(z)
having $\mathrm{u}=\mathrm{x}^{2}-\mathrm{y}^{2}$ as real part
$\mathrm{f}(\mathrm{z})=\int\left[\frac{\partial \mathrm{u}(\mathrm{z}, 0)}{\partial \mathrm{x}}-\mathrm{i} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}(\mathrm{z}, 0)\right] \mathrm{dz}$
$=\int(2 \mathrm{z}-0) \mathrm{dz}$
$=z^{2}$
Let $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$
then $u+i v=z^{2}$
$=(\mathrm{x}+\mathrm{iy})^{2}$
$=x^{2}-y^{2}+i 2 x y$
$\therefore \mathrm{v}=2 \mathrm{xy}$
50. (2)

Formula:
If $w=f(z)$
then $\frac{\mathrm{dw}}{\mathrm{dz}}=\frac{\partial \mathrm{w}}{\partial \mathrm{x}}$ and

$$
\frac{\mathrm{dw}}{\mathrm{dz}}=-\mathrm{i} \frac{\partial \mathrm{w}}{\partial \mathrm{y}}
$$

$\therefore \frac{\partial \mathrm{w}}{\partial \mathrm{x}}=-\mathrm{i} \frac{\partial \mathrm{w}}{\partial \mathrm{y}}$
51. (1)

Let $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$
If $f(z)=\frac{-i \mathrm{z}^{\mathrm{c}}}{2}+$ ic
then $\mathrm{f}(\mathrm{z})=\frac{-\mathrm{i}(\mathrm{x}+\mathrm{iy})^{2}}{2}+\mathrm{ic}$
$=\frac{-\mathrm{i}\left(\mathrm{x}^{2}-\mathrm{y}^{2}+2 \mathrm{ixy}\right)}{2}+\mathrm{ic}$
$=x y+i\left(\frac{y^{2}-x^{2}}{2}+c\right)$
$\therefore \mathrm{u}=\mathrm{xy}$
So if $f(z)=\frac{-i z^{2}}{2}+$ ic then the real part is $x y$.
52. (3)

If $\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}\right)=\left(\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \mathrm{z}_{4}\right)$
then
$\frac{\left(\mathrm{w}_{1}-\mathrm{w}_{2}\right)\left(\mathrm{w}_{3}-\mathrm{w}_{4}\right)}{\left(\mathrm{w}_{2}-\mathrm{w}_{3}\right)\left(\mathrm{w}_{4}-\mathrm{w}_{1}\right)}=\frac{\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)\left(\mathrm{z}_{3}-\mathrm{z}_{4}\right)}{\left(\mathrm{z}_{2}-\mathrm{z}_{3}\right)\left(\mathrm{z}_{4}-\mathrm{z}_{1}\right)}$
we have $(\mathrm{z}, 0,1, \infty)=(\mathrm{w},-1,-\mathrm{i}, 1)$
$\Rightarrow \frac{(\mathrm{z}-0)(1-\infty)}{(\mathrm{z}-\infty)(1-0)}=\frac{(\mathrm{w}+1)(-\mathrm{i}-1)}{(\mathrm{w}-1)(-\mathrm{i}-1)}$
$\Rightarrow \frac{(\mathrm{w}+1)(-\mathrm{i}-1)(1+\mathrm{i})}{(\mathrm{w}-1)(1-\mathrm{i})(1+\mathrm{i})}=\frac{\mathrm{z}(1-\infty)}{(\mathrm{z}-\infty)}$
Now
$\frac{1-\infty}{z-\infty}=\lim _{\mathrm{t} \rightarrow \infty}\left(\frac{1-\mathrm{t}}{\mathrm{z}-\mathrm{t}}\right)$
$=\lim _{\mathrm{t} \rightarrow \infty} \frac{\frac{1}{\mathrm{t}}-1}{\frac{\mathrm{t}}{\mathrm{t}}-1}$
$=1$
Now (1) \Rightarrow
$\left(\frac{\mathrm{w}+1}{\mathrm{w}-1}\right)\left({\left.\frac{-(1+\mathrm{i})^{2}}{2}\right)=\mathrm{z}, ~(2)}_{2}\right.$
$\Rightarrow \frac{\mathrm{w}+1}{\mathrm{w}-1}(-\mathrm{i})=\mathrm{z}$
$\Rightarrow \frac{\mathrm{w}+1}{\mathrm{w}-1}=\mathrm{iz}$
$\Rightarrow \mathrm{w}+1=\mathrm{iz}(\mathrm{w}-1)$
$\Rightarrow \mathrm{w}=\frac{\mathrm{iz}+1}{\mathrm{iz}-1}$
$=\frac{i\left(z+\frac{1}{i}\right)}{i\left(z-\frac{1}{i}\right)}$
$=\frac{\mathrm{z}-\mathrm{i}}{\mathrm{z}+\mathrm{i}}$
\therefore Required bilinear transform $\mathrm{w}=\frac{\mathrm{z}-\mathrm{i}}{\mathrm{z}+\mathrm{i}}$
53. (4)

Cauchy's Residue theorem
$\int_{c} f(z) d z=2 \pi i \times$ sum of residues inside C

$$
|z+1|=1 \Rightarrow \mid z-(-1)=1
$$

is a circle with centre $\mathrm{z}=-1$ and radius $=1$
Let $f(z)=\frac{z^{2}+1}{z^{2}-1}$
$=\frac{z^{2}+1}{(z+1)(z-1)}$
Poles - $\mathrm{z}=1,-1$
$\mathrm{z}=-1$ lies inside $\mid \mathrm{z}+1!=1$
Residue at $\mathrm{z}=-1$
$=\lim _{z \rightarrow-1}(z+1) f(z)$
$=\lim _{z \rightarrow-1}(z+1) \frac{z^{2}+1}{(z-1)(z+1)}$
$=\lim _{z \rightarrow-1} \frac{z^{2}+1}{z-1}$
$=\frac{2}{-2}=-1$
By Cauchy's residue theorem
$\left.\therefore \int_{\mathrm{c}} \mathrm{f}(\mathrm{z}) \mathrm{dz}\right)=2 \pi \mathrm{i} \times-1$
$=-2 \pi i$
54. (1)
$\mathrm{w}=\mathrm{z}-1$
then $\mathrm{z}-4=\mathrm{w}-3$
$\mathrm{f}(\mathrm{z})=\frac{1}{\mathrm{z}-4}=\frac{1}{\mathrm{w}-3}$
$=\frac{1}{w\left(1-\frac{3}{w}\right)}$
$=\frac{1}{2}\left(1-\frac{3}{w}\right)^{-1}$
$=\frac{1}{w}\left(1+\frac{3}{w}+\frac{3^{2}}{w^{2}}+\cdots\right)$
$=\frac{1}{\mathrm{w}}+\frac{3}{\mathrm{w}^{2}}+\frac{3^{2}}{\mathrm{w}^{3}}+\ldots$
$=\frac{1}{(z-1)}+\frac{3}{(z-1)^{2}}+\frac{3^{2}}{(z-1)^{3}}+\cdots$
\therefore Coefficient of $\frac{1}{(z-1)^{2}}=3$
55. (3)

$$
\begin{aligned}
& \mathrm{w}=\mathrm{f}(\mathrm{z})=\mathrm{e}^{\mathrm{x}} \cos \mathrm{y}+\mathrm{ie}^{\mathrm{x}} \sin \mathrm{y} \\
& \mathrm{w}=\mathrm{u}+\mathrm{iv} \\
& =\mathrm{e}^{\mathrm{x}}(\cos \mathrm{y}+\mathrm{i} \sin \mathrm{y}) \\
& \mathrm{u}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{y} \\
& \mathrm{v}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y} \\
& \frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{y} \\
& \frac{\partial \mathrm{u}}{\partial \mathrm{y}}=-\mathrm{e}^{\mathrm{x}} \sin \mathrm{y} \\
& \frac{\partial \mathrm{v}}{\partial \mathrm{x}}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y} \\
& \frac{\partial \mathrm{v}}{\partial \mathrm{y}}=\mathrm{e}^{\mathrm{x}} \cos \mathrm{y} \\
& \therefore \frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\frac{\partial \mathrm{v}}{\partial \mathrm{y}}
\end{aligned}
$$

$$
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial \mathrm{x}}
$$

C.R. equations are satisfied
$\therefore \mathrm{f}(\mathrm{z})$ is analytic everywhere in the complex plane.
56. (4)

Let $\mathrm{u}=\mathrm{P}+\mathrm{Q}$
$\mathrm{v}=\mathrm{Q}-\mathrm{P}$
by CR. equations
$u_{x}=v_{y}$
$u_{\mathrm{y}}=-\mathrm{v}_{\mathrm{x}}$
$\therefore \frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}=\frac{\partial Q}{\partial y}-\frac{\partial P}{\partial y}$
$\frac{\partial P}{\partial y}+\frac{\partial Q}{\partial y}=-\frac{\partial Q}{\partial x}+\frac{\partial P}{\partial x}$
$\Rightarrow \frac{\partial P}{\partial x}-\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}+\frac{\partial Q}{\partial y}$
(1) $+(2)$
$\Rightarrow 2 \frac{\partial P}{\partial x}=2 \frac{\partial Q}{\partial y}$
$\Rightarrow \frac{\partial \mathrm{P}}{\partial \mathrm{x}}=\frac{\partial \mathrm{Q}}{\partial \mathrm{y}}$
(1) $-(2) \Rightarrow$

$$
\begin{equation*}
2 \frac{\partial Q}{\partial x}=-2 \frac{\partial P}{\partial y} \tag{4}
\end{equation*}
$$

$\Rightarrow \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$
by (3) and (4)
$\mathrm{f}(\mathrm{z})=\mathrm{P}+\mathrm{iQsatisties}$
C.R. equations
$\therefore \mathrm{P}+\mathrm{iQ}$ is an analytic function
57. (2)

A function $\mathrm{w}=\mathrm{f}(\mathrm{z})$ is not confoltnui z_{0} then $\frac{\mathrm{dw}}{\mathrm{dz}}=\mathrm{f}^{\prime}\left(\mathrm{z}_{0}\right)$ if $\mathrm{z}_{0}=-\frac{\mathrm{d}}{\mathrm{a}}$
then $f(z)$ is not analytic.
58. (3)

$$
16 x^{2}+y^{2}=1
$$

$$
\begin{aligned}
& \frac{x^{2}}{1 / 16}+y^{2}=1 \\
& \frac{x^{2}}{\left(\frac{1}{4}\right)^{2}}+\frac{y^{2}}{1}=1
\end{aligned}
$$

Let $\int f(z) d z=\int_{c} \frac{d z}{z^{2}+9}$
$=\int_{\mathrm{c}} \frac{\mathrm{dz}}{(\mathrm{z}+3 \mathrm{i})(\mathrm{z}-3 \mathrm{i})}$
The points $\mathrm{z}=3 \mathrm{i}$, -3 i lies outside C
\therefore By Cauchy Goursattheoem
$\int_{c} f(z) d z=0 \Rightarrow \int_{c} \frac{d z}{z^{2}+9}=0$
59. (3)

$$
\begin{aligned}
& \quad \mathrm{e}^{1 / 2}=1+\frac{1}{\mathrm{z}}+\frac{1}{2!\mathrm{z}^{2}}+\frac{1}{3!\mathrm{z}^{3}}+\cdots \\
& =1+\frac{1}{(\mathrm{z}-0)}+\frac{1}{2(\mathrm{z}-0)^{2}}=\frac{1}{6(\mathrm{z}-0)^{3}}+\cdots
\end{aligned}
$$

since $\frac{1}{z-0}$ terms are infinite, $z=0$ is an essential singularity
60. (4)

Consider $\mathrm{f}(\mathrm{z})=|\mathrm{z}|^{2}$
$=x^{2}+y^{2}$
if $f(z)=u+i v$ then
$u=x^{2}+y^{2} ; v=0$
$\frac{\partial u}{\partial x}=2 x ; \frac{\partial u}{\partial y}=2 y$

$$
\frac{\partial \mathrm{v}}{\partial \mathrm{x}}=0 ; \frac{\partial \mathrm{v}}{\partial \mathrm{y}}=0
$$

$\therefore \frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} \neq \frac{-\partial y}{\partial x}$
C.R equation is not statistical So $f(z)=|z|^{2}$ is not analytic
61. (1)

Let $\mathbf{J}=\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right|$
$=\frac{\partial u}{\partial \mathrm{x}} \frac{\partial \mathrm{v}}{\partial \mathrm{y}}-\frac{\partial \mathrm{u}}{\partial \mathrm{y}} \frac{\partial \mathrm{v}}{\partial \mathrm{x}}$
Given $w=u+i v$ is analytic
$\therefore \mathrm{w}$ satisfies C.R. equation
i.e., $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$

$$
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial \mathrm{x}}
$$

$\therefore(1) \Rightarrow$

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{x}} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}-\frac{\partial \mathrm{v}}{\partial \mathrm{x}}\left(-\frac{\partial \mathrm{v}}{\partial \mathrm{x}}\right)
$$

$=\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}$
$=\left|\frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{i} \frac{\partial \mathrm{v}}{\partial \mathrm{x}}\right|^{2}$
$=\left|\frac{\partial \mathrm{w}}{\partial \mathrm{x}}\right|^{2}$
$=\left|\frac{\mathrm{dw}}{\mathrm{dz}}\right|^{2}\left[\because \frac{\mathrm{dw}}{\mathrm{dz}}=\frac{\partial \mathrm{w}}{\partial \mathrm{x}}\right]$
62. (3)

Given $\mathrm{u}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y}$
$\frac{\partial u}{\partial \mathrm{x}}=\mathrm{e}^{\mathrm{x}} \sin \mathrm{y}$
$\frac{\partial u}{\partial y}=e^{x} \cos y$
If $v=-e^{x} \cos y+c^{2}$
then $\frac{\partial v}{\partial x}=-e^{x} \cos y$
$\frac{\partial v}{\partial y}=e^{x} \sin y$
clearly
$\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}$
and $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$
C.R. equations are satisfied
$v=-e^{x} \cos y+c^{2}$
is the required imaginary part.
63. (4)

$$
\begin{aligned}
& \mathrm{w}=\mathrm{z}^{2} \\
& \mathrm{u}+\mathrm{iv}=(\mathrm{x}+\mathrm{iv})^{2}
\end{aligned}
$$

Follow us on FB for exam Updates: ExamsDaily

Functions of Complex Variables and Complex Integration

$=x^{2}-y^{2}+2 i x y$
$\therefore \mathrm{u}=\mathrm{x}^{2}-\mathrm{y}^{2}$
$\mathrm{v}=2 \mathrm{xy}$
when $\mathrm{y}=1$
$\mathrm{u}=\mathrm{x}^{2}-1$
$\mathrm{v}=2 \mathrm{x}$
Eliminating x
$u=\left(\frac{v}{2}\right)^{2}-1$
$\Rightarrow\left(\frac{\mathrm{v}}{2}\right)^{2}=\mathrm{u}+1$
$v^{2}=4(u+1)$
This is a parabola with vertex $(-1,0)$
64. (3)

Let $f(z)=\frac{e^{z}}{z(z-\pi)}$
Poles are $\mathrm{z}=0, \pi$
Clearly $\mathrm{z}=0$ lies inside $|\mathrm{z}-1|=2$
Res at $\mathrm{z}=0=\lim _{\mathrm{z} \rightarrow 0}(\mathrm{z}-0) \mathrm{f}(\mathrm{z})$
$=\lim _{z \rightarrow 0} \frac{e^{z}}{z(z-\pi)}$
$=\frac{e^{0}}{0-\pi}=\frac{-1}{\pi}$
By Cauchy residue theorem
$\int_{c} f(z) d z=2 \pi i \times$ sum of the residues inside
C
$\therefore \int_{\mathrm{c}} \frac{\mathrm{e}^{\mathrm{z}}}{\mathrm{z}(\mathrm{z}-\pi)} \mathrm{dz}=2 \pi \mathrm{i} \times\left(\frac{-1}{\pi}\right)=-2 \mathrm{i}$

Join Us on FB 5 :
English - Examsdaily Tamil - Examsdaily Tamil

Whatsapp Group
English - Click Here
Tamil - Click Here

