

Previous Year Solved Questions

1.	The mapping $w = z^2 - 2z - 3$ is	
	1) conformal everywh	nere
	2) not conformal at z=	= -1 and z = -3
	3) conformal with $ z $ =	= 1
	4) not conformal at z	= 1
2.	The residue at $z = 0$ of $\frac{1+e^2}{2}$ is	
	1) 0	2) 1
	3) 4	4) -1
3.	The value of $\int_{C} \frac{3z^2 + 7z}{z+1}$	$\frac{+1}{2}$ dz where C is
	z =0.5 is	
	1) 0	2) $\frac{\pi i}{2}$
	3) πi	4) $2\pi i$
4.	Singularity of ze^{1/x^2}	at $z = 0$ is of the type
	1) isolated singularity	
	2) removable singular	ity
	3) essential singularity	y
	4) isolated and remov	able singularities
5.	The analytic function	on which maps an
	angularregion $0 \le \theta \le \frac{1}{2}$	$\frac{\pi}{4}$ on to the upper half
	plane is	
	1) 4z	2) z ⁴
	3) 20	4) z^2
6.	Let $f(z) = u + iv b$	e an analytic function
	which of the follo correct?	owing statements are
	a) both u and v satisfy	Laplace equation
	b) Family of curves	u=c, and $v = C2$ cut
	orthogonally	
	c) $u_x = -v_y$ and $u_y = v_x$	
	d) u-iv is also an anal	ytic function
	1) (a) and (b) only	
	2) (a), (b) and (c) only	у
	3) (a), (b) and (d) only	y
	4) (b), (c) and (d) onl	У

7.	The image of the straight line $2x+3y$	
	Ounder the transformation $w = \frac{1}{7}$ is a	
	1) straight line	2) parabola
	3) ellipse	4) circle
8.	The value of the Integ	gral $\int_{C} \frac{z^2+5}{(z-1)^2} dz$, where z
	is a complex number	and C is the circle \mid z-
	1 = 1, is	
	1) 12πi	2) 6πi
	3) 4πi	4) 2πi
9.	The residue of the fur	action f(z) = $\frac{z^3 + 5z + 7}{(z-2)(z+3)^3}$ at
	the simple pole is	
	1) 1	2) 5
1.0	3) 25	4) 30
10.	C-R equation for a fu	nctionW=P(r, θ) +
	$iQ(r,\theta)$ to be analytic,	in Polarform are
	1) $\frac{\partial P}{\partial r} = \frac{1}{r} \frac{\partial Q}{\partial \theta}; \frac{\partial Q}{\partial r} = -\frac{1}{r} \frac{\partial Q}{\partial r}$	$r \frac{\partial P}{\partial \theta}$
	$2)\frac{\partial Q}{\partial \theta} = \frac{1}{r}\frac{\partial P}{\partial r}; \ \frac{\partial P}{\partial \theta} = \frac{1}{r}\frac{\partial}{\partial r}$	Q r
	3) $\frac{\partial P}{\partial r} = -\frac{1}{r} \frac{\partial Q}{\partial \theta}; \frac{\partial Q}{\partial r} =$	$\frac{1}{n} \frac{\partial P}{\partial Q}$
	$dr = r \partial \theta \ \partial r = r \partial \theta$ $dr = 1 \partial Q \ \partial Q \ = 1 \partial P$	
11	$\frac{1}{2\theta} = \frac{1}{r} \frac$	r ∂θ
11.	If $f(z) + u+iv$ le an a	analytic function and u
	and v are harmonic, the	nen u and v will satisfy
	1) one dimensional w	ave equation
	2) one dimensional w	ave equation
	4) Poisson equation	
	4) FOISSOIL Equation	
12	In the analytic function	on $f(z)=u+iv$ the curves
12.	$u(x, y) = C_1$ and $V(x)$	$(x) = C_2$ are orthogonal
	If the product of the s	lopes m_1 and m_2 are
	1) $m_1 m_2 = 0$	2) $m_1 m_2 = -\pi$
		•

3) m₁ m₂= $-\frac{\pi}{2}$ -4) m₁ m₂=-1

Functions of Complex Variables and Complex Integration

If the Imaginary part of the analytic function 13. f(z)=u + iv is constant, then 1) u is not a constant 2) f(z) is not a complex constant 3) f(z) is equal to zero 4) u is a constant If $f(z) = P(r, \theta) + iQ(r, \theta)$ is analytic, then 14. f'(z) is equal to 1) $e^{i\theta} \left[\frac{\partial P}{\partial r} + i \frac{\partial Q}{\partial \theta} \right]$ 2) $e^{-i\theta} \left[\frac{\partial P}{\partial r} + i \frac{\partial Q}{\partial \theta} \right]$ 3) $e^{-i\theta} \left[\frac{\partial P}{\partial r} + i \frac{\partial Q}{\partial r} \right]$ 4) $e^{i\theta} \left[\frac{\partial P}{\partial r} + i \frac{\partial Q}{\partial r} \right]$ The necessary and sufficient conditions for 15. the function $f(x) = u(r, \theta) + i(r, \theta)$ to be analytic is 1) $u_r = rv_0$ and $u_0 = \frac{-1}{r}v_r$ 2) $u_r = \frac{1}{r} v_{\theta}$ and $u_{\theta} = -r v_r$ 3) $u_{\theta} = \frac{1}{r} v_{\theta}$ and $u_{\theta} = r v_{r}$ 4) $u_r = rv_0$ and $u_0 = \frac{1}{r}v_r$ The function $f(z) = z + 2\overline{z}is$ 16. 1) analytic in the upper half plane 2) analytic inside the unit circle 3) analytic everywhere in complex plane 4) not analytic anywhere In the complex plane 17. In the two dimensional fluid flow, if the stream function is $\psi = \frac{-y}{x^2 + y^2}$, then the velocity potential ϕ is 1) $\phi = \frac{x}{x^2 + y^2}$ 2) $\phi = \frac{y}{x^2 + y^2}$ 3) $\phi = \frac{-x}{x^2 + y^2}$ 4) $\phi = \frac{-y}{x^2 + y^2}$ The value of the Integral $\int \frac{2z+1}{z^2+2} dz$, where C 18. is $|z| = \frac{1}{2}$ is 1) 2πi 2) 3πi 2

	2) 5 ;	4)0
10	5) 511 The state of the state o	4)0
19.	The residue of $z \cos \frac{1}{2}$	z = 0 1s
	1) 1	2) -1
	$(3)\frac{1}{2}$	$4)\frac{-1}{2}$
20.	The analytic function	tion, whose real part
	$\left(\frac{x}{x^2+y^2}\right)$ is given by	
	1) z^2	2) z
	$(3)^{\frac{1}{2}}$	4) $z + \frac{1}{2}$
21	Couchy Diamonn of	$\frac{1}{z}$
21.	iV(r, A) is	oliditions $1011(2) - u(1, 0)$
	+ 1 v (1, 0) is $1) u = V_0 : u_0 = -V_0$	
	$1)u_{r} = v_{0}, u_{\theta} = v_{1}$ $2)ru_{r} = v_{0} \cdot rv_{r} = u_{r}$	
	$2)ru_{r} = v_{\theta}, rv_{r} = u_{0}$ $3)ru_{0} = V : rv_{0} = -$) -11
	$4)ru = v_{r} \cdot u_{\theta} = -r$	·V
22	Choose the correct	answer. If $w = f(z)$ is
	analytic, then	
	$1)\frac{\partial w}{\partial w} - i\frac{\partial w}{\partial w}$	
	$1)\frac{\partial z}{\partial z} = 1\frac{\partial z}{\partial z}$	
	$2)\frac{\partial w}{\partial z} = \frac{\partial w}{\partial y}$	
	3) $\frac{\partial^2 w}{\partial w} \neq 0$	
	$\frac{\partial z}{\partial z} \frac{\partial \overline{z}}{\partial w}$	
	4) $\frac{\partial w}{\partial \overline{z}} = 0$	
23.	The value of m such	that $2x-x^2+my^2$ may be
	harmonic is	
	1) 3	2) 1
	3) 2	4) 4
24.	Image of circle $ z = 2$	by the transformation
	w=z+2+3i, is	
	1) $ w+(2+31) = 2$	2) $ w-(2+31) = 3$
	3) $ W-(2+31) = 2$	4) $ W = 1$
25.	Value of integral J	(z + 1)dz, where C is
	asquare with vertice	es 0, 1, 1 + i and i is
	equal	
	1) zero	2) 1
	3) -1	4) 2πi

Download Study Materials on www.examsdaily.in

	-2	
26.	Residue of $\frac{z^2}{z^2+a^2}$ at z=al is	
	$1)\frac{1}{2a}$	2) i a
	3) $\frac{ia}{2}$	4)2ai
27.	The conditions CR	equations $f(z) = u + iv$ to
	be analytic are	•
	1) $U_x = -V_y, V_x = U_y$	
	2) $U_x = V_y$, $V_x = -U_y$	
	3) $U_x = V_x, U_y = -V$	у
	4) $U_x = U_y, V_x = -V$	у
28.	If the real part of	of the analytic function
	f(z)=u+iv is constar	it then
	1) v is not constant	
	2) $f(z)$ is not a comp	olex constant
	3) v is a constant	
	4) $f(z)$ is equal to zet	ero
29.	The function $z\overline{z}$ is	
	1) analytic at $(1, 1)$	2) no where analytic
	3) analytic at (-1, -1) 4) analytic in $(2, 2)$
30.	If $f(z) = u + iv$ is an	alytic then $f'(z) =$
	1) $u_x + iv_y$	2) $u_y + iv_x$
01	3) $u_x + 1v_x$	4) $u_x + 1v_x$
31.	If $f(z) = u+iv$ is a	in analytic function and
	v=xy then $I(z)$ is eq	ual to
	$1)\frac{-2}{2}$	2) $z^2 + z$
	$3)\frac{z^2}{2}$	4) $z^{2}-z$
32.	If $w=P(r, \theta) + iQ(r, \theta)$	θ) be a analytic function
	then	
	$1)\frac{\partial P}{\partial r} = \frac{\partial Q}{\partial \theta}$	2) $\frac{\partial P}{\partial \theta} = \frac{\partial Q}{\partial r}$
	$3)\frac{\partial P}{\partial r} - \frac{1}{r}\frac{\partial Q}{\partial Q}$	$4)\frac{\partial P}{\partial r} = \frac{-1}{r}\frac{\partial Q}{\partial Q}$
33.	If $w = u(x,v) + $	iv(x,y) be an analytic
	function is equal to	
	1) $\frac{\partial u}{\partial u} \pm i \frac{\partial v}{\partial v}$	2) $\frac{\partial u}{\partial v} = i \frac{\partial v}{\partial v}$
	$\partial x \partial x$	$\frac{\partial y}{\partial x}$ $\frac{\partial y}{\partial y}$
	3) $-\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$	$4)\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}$
34.	If $f(z) = u + iv$ is an	analytic function, then

Functions of Complex Variables and Complex Integration

	1) only u is harmonic	function
	2) only v is harmonic function	
	3) both u and v are harmonic function	
	4) both u and v are no	t harmonic function
25	$\int z^2$	
35.	The value of $\int \frac{1}{c} \frac{1}{x+3} d$	z where C is the circle
	z = 2 is	
	1) 0	2) 4
	3) -4	4) $-\frac{4}{5}$
36.	The residue of the	function $e^{1/z}$ at the
	singular point $z = 0$ is	
	1) 0	2) -1
	3) 1	4)∞
37.	Which one of the	following is not an
	analytic function?	
	1) e^{z}	2) sin z
	3) cos z	4) $ z ^2$
38.	If c is a real constant	nt an analytic function
	whose real part xy is	2
	1) $\frac{-12^2}{2}$ + ic	2) $\frac{z^2}{2} + c$
	$3)\frac{-z^2}{2} + ic$	4) $\frac{-iz^2}{2}$ + ic
39.	The bilinear transform	nation which maps $z =$
	1, i, ∞ into W = i, 1, c) is
	$1)\frac{1}{x}$	2) $\frac{i}{\pi}$
	3) iz	$(4)\frac{1}{2}$
40	If $w = u(x,y) + iy$	$\frac{1}{z_i}$ (x, y) is an analytic
	function of $z = x + iy$ then	
	1) $\frac{\partial u}{\partial v} = \frac{\partial v}{\partial v}$ and $\frac{\partial u}{\partial v} = \frac{\partial v}{\partial v}$	- dv
	$\frac{1}{\partial x} - \frac{1}{\partial x} = \frac{1}{\partial x}$	<u>ðx</u>
	OX OX OY	0 A
	2) $\frac{\partial u}{\partial x} = \frac{-\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} =$	$\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$
	2) $\frac{\partial u}{\partial x} = \frac{-\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} =$ 3) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial y}$	$\frac{\partial v}{\partial x}$
	2) $\frac{\partial u}{\partial x} = \frac{-\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} =$ 3) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}$ and $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$	$\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$
	2) $\frac{\partial u}{\partial x} = \frac{-\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} =$ 3) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}$ and $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$ 4) $\frac{\partial u}{\partial x} = \frac{-\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} =$	$\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$ $\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$ $\frac{\partial \mathbf{v}}{\partial \mathbf{x}}$
41.	2) $\frac{\partial u}{\partial x} = \frac{-\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} =$ 3) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}$ and $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$ 4) $\frac{\partial u}{\partial x} = \frac{-\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} =$ Invariant points of a	$\frac{\partial v}{\partial x}$ $\frac{\partial v}{\partial x}$ $\frac{\partial v}{\partial x}$ $\frac{\partial v}{\partial x}$ bilinear transformation

Download Study Materials on www.examsdaily.in

3

Functions of Complex Variables and	ł
Complex Integration	

	1) $\frac{-1}{2} \{ \sqrt{1+i} \pm 6i \}$	$2)\frac{-1}{2}((1+i)\pm\sqrt{6i})$
	$3)\frac{1}{2}((1+i)+\sqrt{3+i})$	$\frac{1}{1}$ $\frac{-1}{1}$ (6i +
	$\sqrt{2}$	
12	$\sqrt{3} + 1$) The critical point	a of the conformal
42.	The chucal point	
	transformation $w = z$	+ - are
	1) 1 and 0	2) -1 and 0
	3) I and -1	4) I and I 1
43.	For the function $f(z)$ =	$=\frac{e^{\overline{z-1}}}{(z-2)^2}$, the point $z=1$
	is	
	1) a simple pole	
	2) a multiple pole	· •.
	3) a removable singul	larity
	4) an essential singula	z^{3+1}
44.	The value of the inte	gral $\int_{ z =3} \frac{z+1}{(z-1)(z-2)} dz$
	is	
	1) πi	2) 2 πi
	3)6 πi	4) $3 \pi i$
45.	Which of the follo	owing is a harmonic
	Tunction ?	2) $\mathbf{a}^{\mathbf{X}}$ aim \mathbf{Y}
	1) e x 3) $x^2 + y^2$	$2) e^{-1} \sin y = \cos y$
46	JX + y If $W - u + iv$ is an ar	4) sin x cosy valutic function of $z - x$
-10.	+ iy then which of the	e following is not true?
	1) $\frac{\partial^2 w}{\partial w} + \frac{\partial^2 w}{\partial w} = 0$	2) $\frac{\mathrm{dw}}{\mathrm{dw}} = \frac{\partial \mathrm{w}}{\partial \mathrm{w}}$
	$\frac{1}{\partial x^2} + \frac{1}{\partial y^2} = 0$	$dz = \frac{\partial x}{\partial x}$
	3) $\frac{dw}{dz} = -i \frac{\partial w}{\partial y}$	$4)\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
47.	The bilinear transform	mation which maps $z =$
	1, i, ∞ into i, 1, 0 is	
	$1)\frac{1}{z}$	2) $\frac{i}{z}$
	3) iz	$(4)\frac{1}{z_{i}}$
48.	The critical points of	the transformation
	w = (z - 1) (z - 2)	
	1) $z = 1$	2) z=2
	3) $z = \frac{3}{2}$	4) $z = \frac{4}{5}$

49.	If $f(z) = u + iv$ is an analytic function of z	
	such that $u = x^2 - y^2$, the such that $u = x^2 - y^2$ and $u = x^2 - y^2$.	hen the value of v is
	1) xy	2) 2xy
	3) -xy	4) -2xy
50.	If $w = f(z) = u + iv$ is	an analytic function of
	z = x + iy then which	of the following is/are
	true?	
	1) $\frac{\mathrm{dw}}{\mathrm{dz}} = \frac{\partial \mathrm{u}}{\partial \mathrm{x}} + \mathrm{i} \frac{\partial \mathrm{v}}{\partial \mathrm{y}}$	2) $f'(z) = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$
	3) $\frac{\partial w}{\partial y} = i \frac{\partial w}{\partial x}$	4) $\frac{\partial w}{\partial x} = -i \frac{\partial w}{\partial y}$
	1) (a) only	2) (d) only
	3) (b) and (d) only	4) (b) and (c) only
51.	I. If c is a real constant on analytic function	
	whose real part is xy i	is
	1) $\frac{-iz^2}{2}$ + ic	2) $\frac{z^2}{2} + c$
	3) $\frac{z^2}{2}$ + ic	4) $\frac{iz^2}{2} + c$
52.	The bilinear transformation which maps z =	
	$0,1, \infty$ onto w = -l, -i,	1 respectively is given
	by	
	1) w = $\frac{z}{z-i}$	2) w = $\frac{z}{z+i}$
	$3 w = \frac{z-1}{z+i}$	4) w = $\frac{z+i}{z-i}$
53.	$\int_{ x-1 -1} \frac{z^2+1}{z^2-1} dz =$	
	1) 0	2) 2π
	3) 2 πi	4) -2 πi
54.	In the Laurent series f	for $f(z) = \frac{1}{z-4}$ at centred

- 54. In the Laurent series for $f(z) = \frac{1}{z-4}$ at centred at z = 1, the coefficient of $(z-1)^{-2}$ is 1) 3 2) -3 3) 9 4) -9
- 55. $f(z) = e^x \cos y + ie^x \sin y$ is analytic 1) at the origin only 2) nowhere In the complex plane
 - 3) everywhere In the complex plane
 - 4) at all points on the real axis only
- 56. Given that P+Q and Q-P can be the real and imaginary parts of an analytic function

respectively, which of the following is an analytic function? 1) (P+Q) + i(P-Q)2) (P-Q) + i(P+Q)3) P-iQ 4) p + iQThe bilinear transformation $w = \frac{az+b}{cz+d}$ is 57. 1) not conformal anywhere 2) conformal everywhere except at one point 3) conformal everywhere 4) analytic everywhere If C is the curve $16x^2 + y^2 = 1$ the value of 58. $\int_{c} \frac{dz}{z^2+9}$ is 1) $\frac{\pi}{3}$ 2) $\frac{-\pi}{3}$ 4) $\frac{1}{3} \tan^{-1} \left(\frac{2\pi}{3} \right)$ 3) 0 For the function $e^{1/z}$ the point z = 0 is 59. 1) a simple pole 2) a pole of infinite order 3) an essential singularity 4) a regular point Which of the following is not an analytic 60. function? 1) e^{z} 2) $\sin z$ 4) $|z|^2$ 3) coshz If w = u(x, y) + iv(x, y) is analytic, then 61. $\left|\frac{\mathrm{dw}}{\mathrm{dz}}\right|^2 =$ 1) $\frac{\partial(u,v)}{\partial(x,y)}$ 2) $\frac{\partial(x,y)}{\partial(x,y)}$ 4) $\frac{\partial(y,x)}{\partial(u,v)}$ 3) $\frac{\partial(v,u)}{\partial(x,y)}$ Given that $u = e^x \sin y$ as the real part of an 62. corresponding analytic function, the imaginary part is 1) e^{y} sinx 2) $-e^{x}\cos y + ic$ where c is a real constant 3) $-e^{x}\cos y+c^{2}$ where c is a real constant 4) $e^{x}\cos(xy)$ The transformation $w = z^2$ transforms the 63. line y=1 into

1) a circle, centre (0, 1) and radius 1 2) a straight line $\frac{y}{x} = 1$ 3) a hyperbola with vertex (1, 0)4) a parabola with vertex at (-1, 0)The value of the integral $\int_{c} \frac{e^{z} dz}{\tau(z-\pi)}$ where 64. c is the circle |z - 1| = 2 is 1) 0 2) 4i 3) -2i 4) 2i **DETAILED SOLUTIONS** (4) The mapping f(z) is analytic and $f'(z) \neq 0$

then the mapping
$$w = f(z)$$
 is conformal.
 $f(z) = z^2 - 2z - 3$
 $f'(z) = 2z - 2$
 $f'(z) = 0$
 $2z-2 = 0$
 $2(z-1) = 0$
 $z = 1$
 \therefore $f'(1) = 0$
This implies $w = f(z)$ is not conformal at $z=1$.

1.

(2)If $f(z) = \frac{\phi(z)}{\psi(z)}$ and ψ (a) = 0 ϕ (a) \neq 0 then Residue (at z = a) $\frac{\phi(a)}{\psi'(a)}$ consider $\phi(a) = \frac{1+e^z}{z\cos z + \sin z}$ $\phi(z) = 1 + e^{z}$ $\phi(z) = z\cos+\sin z$ $\phi(0) = 1 + e^0 = 2$ $\psi(0) = 0 + 0 = 0$ Now $\psi'(z) = \cos z \cdot z \sin z + \cos z$ $= 2\cos z \cdot z \sin z$ Residue (at z = 0)

5

Download Study Materials on www.examsdaily.in

3.

4.

5.

Functions of Complex Variables and Complex Integration

Required analytic function is $f(z) = z^4$

6. (1)Statements (a) and (b are true C-R equation is $u_x = v_y$; $u_y = -v_x$ \therefore Statement (c) is not correct Given f(z) = u + iv is an analytic function $\therefore u_x = v_y$; $u_y = -v_x$...(1) Consider $\overline{f(z)} = u - iv$ = P + iQwhere P = U : O = -VNow $P_x = u_x$; $Q_x = -v_x$ $P_{v} = u_{v}$; $Q_{v} = -v_{va}$ by (1) $P_x \neq Q_y$ and $P_y \neq -Q_x$ $\therefore \overline{f(z)}$ does not satisfy C-R equation $\therefore \overline{f(z)} = u$ -iv is not analytic \therefore Statement (d) is not true 7. (4) Let z = x + iyand w = u + iv $W = \frac{1}{7}$ $\Rightarrow z = \frac{1}{w}$ $\Rightarrow x + iy = \frac{1}{u + iv}$ $= \frac{1}{u+iv} imes \frac{u-iv}{u-iv}$ $= \frac{u - iv}{u^2 + v^2}$ $= \frac{u}{u^2 + v^2} - i \frac{v}{u^2 + v^2}$ $\therefore x = \frac{u}{u^2 + v^2}; v = \frac{-v}{u^2 + v^2}$ Given straight line is 2x + 3y + 5 = 0 $\Rightarrow 2\left(\frac{u}{u^2+v^2}\right) + 3\left(\frac{-v}{u^2+v^2}\right) + 5 = 0$ $\Rightarrow 5(u^2 + v^2) 2u - 3v = 0$ \therefore Image is a circle. 8. (3)

Download Study Materials on www.examsdaily.in

6

By Cauchy's integral formula, if $z_0 \in C$ then $f'(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z-z_0)^2}$

consider
$$\int_{c} \frac{(z^2 + 5)dz}{(z - 1)^2}$$

f (z) = $z^2 + 5$
f'(z) = 2z
f'(1) = $2(1)=2$
By (1)
f'(1) = $\frac{1}{2\pi i} \int_{c} \frac{(z^2 + 5)dz}{(z - 1)^2}$
 $\Rightarrow \int_{c} \frac{(z^2 + 5)dz}{(z - 1)^2} = 2\pi i$ f'(1)
= $2\pi i \times 2$
= $4\pi i$

9.

10.

(1) Solution:

Residue of f(z) at a simple pole z = a

is
$$\lim_{x \to 0} (z-a) f(z)$$

For $f(z) = \frac{z^3 + 5z - 7}{(z-2)(z+3)^2}$
 $z = 2$ is a simple pote and
 $z = -3$ is a pole of order 2
 \therefore Residue at the simple pole $z = 2$ is
 $\lim_{x \to 2} (z-2) \frac{z^3 + 5z - 7}{(z-2)(z+3)^2}$
 $= \lim_{x \to 2} \frac{z^3 + 5z + 7}{(z+3)^2}$
 $= \frac{8+10+7}{25} = \frac{25}{25}$
 $= 1$
(1)

Functions of Complex Variables and Complex Integration

If $w = P(r, \theta) + iQ(r, \theta)$ is analytic, then polar form of C-R equations are $\frac{\partial P}{\partial r} = \frac{1}{r} \frac{\partial Q}{\partial \theta}$ $\frac{\partial Q}{\partial r} = \frac{-1}{r} \frac{\partial P}{\partial P}$ (3)f(z) = u + iv is an analytic function, then u and v satisfy Laplace equation. (4) $u(x, y) = C_1$ and $v(x, y) = c_2$ are orthogonal if prouduct of their slopes = -1 i.e., $m_1m_2 = -1$ (4) f(z) = u + ivGiven imaginary part = constant \Rightarrow v = constant $\Rightarrow \frac{\partial v}{\partial x} = 0; \frac{\partial v}{\partial y} = 0$ by C-R equations $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{v}}{\partial \mathbf{y}} = \mathbf{0}$ and $\frac{\partial u}{\partial v} = \frac{\partial v}{\partial x} = 0$ $\Rightarrow \frac{\partial u}{\partial x} = 0$ and $\frac{\partial u}{\partial v} = 0$ \Rightarrow u is constant. (3) $f'(z) = e^{-i\theta} \left[\frac{\partial P}{\partial r} + i \frac{\partial Q}{\partial r} \right]$ (2)The necessary and sufficient conditions for the function $f(z) = u(r, \theta) + i v(r, \theta)$ to be analytic is $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = \frac{-1}{r} \frac{\partial u}{\partial \theta}$

Download Study Materials on www.examsdaily.in

7

11.

12.

13.

14.

15.

$$\Rightarrow u_r = \frac{1}{r} v_{\theta}$$

and $v_r = \frac{-1}{r} v_{\theta}$
i.e. $u_{\theta} = -rv_r$
16. (4)
Let $f(z) = u + iv$
 $f(z) = z + 2\overline{z}$
 $= (x + iy) + 2(x - iy)$
 $= 3x - iy$
 $\Rightarrow u = 3x; v = -y$
 $u_x = 3; u_y = 0$
 $v_x = 0; v_y = -1$
Clearly $u_x \neq v_y$
So C.R. equations are not satisfied.
This implies $f(z)$ is not analytic everywhere
in the complex plane.

17. (1)

The complex potential

$$f(z) = \phi + i\psi$$

Given $\psi = \frac{-y}{x^2 + y^2}$
 $\psi_x = \frac{(x^2 + y^2)0 + y \cdot 2x}{(x^2 + y^2)^2}$
 $= \frac{2yx}{(x^2 + y^2)^2}$
 $\psi_x (z, 0) = 0$
 $\psi_y = \frac{(x^2 + y^2)(-1) + 2y^2}{(x^2 + y^2)^2}$
 $= \frac{-x^2 - y^2 + 2y^2}{(x^2 + y^2)^2}$
 $= \frac{y^2 - x^2}{(x^2 + y^2)^2}$
 $\psi_y (z, 0) = \frac{z^2}{z^4} = \frac{-1}{z^2}$
 \therefore By Miline – Thomdon method
 $f(z) = \int [\psi_y(z, 0) + i\psi_x(z, 0)] dz$
 $= \int (\frac{-1}{z^2} + i0) dz$
 $= -\int \frac{dz}{z^2} = -(\frac{-1}{z})$
 $= \frac{1}{z}$

Download Study Materials on www.examsdaily.in

$$= \frac{1}{x+iy}$$

$$= \frac{1}{x+iy} \times \frac{x-iy}{x-iy}$$

$$= \frac{x-iy}{x^2+y^2}$$

$$\Rightarrow f(z) = \left(\frac{x}{x^2+y^2}\right) + i\left(\frac{-y}{x^2+y^2}\right)$$

$$\therefore The velocity potential
$$\varphi = \frac{x}{x^2+y^2}$$
(1)
Given circle $|z| = \frac{1}{2} \Rightarrow \sqrt{x^2 + y^2} = \frac{1}{2}$

$$\Rightarrow x^2 + y^2 = \left(\frac{1}{2}\right)^2$$
This is a circle with centre at origin and radius $= \frac{1}{2}$

$$\varphi$$
Consider $\int_c \frac{2z+1}{z^2+z} dz$
Equating the denominator to zero
$$z^2 + z = 0$$

$$\Rightarrow z(z+1) = 0$$

$$\Rightarrow z = 0, -1$$
The point $z = 0$ lies inside the circle.
Let $f(z) = \frac{2z+1}{z^2+z}$
Residue of $f(z)$ at $z = 0$

$$= \lim_{x \to 0} (z-0) f(z)$$

$$= \lim_{x \to 0} \frac{2z+1}{z^2+1}$$

$$= \lim_{x \to 0} \frac{2z+1}{z^2+1}$$$$

By Cauchy's residue theorem

18.

19.

20.

 $\int_{c} f(z) dz = 2\pi i$ [sum of residues of points inside c] z = 0 is the only point inside c $\therefore \int_{c} \frac{2z+1}{z^{2}+z} dz = 2\pi i \text{ (Residue at } z = 0)$ $= 2\pi i \times 1 = 2\pi i$ (4) $\cos\left(\frac{1}{z}\right) = 1 - \frac{\left(\frac{1}{z}\right)^2}{2!} + \frac{\left(\frac{1}{z}\right)^4}{4!} - \dots$ $=1-\frac{1}{2\pi^2}+\frac{1}{24\pi^4}-\cdots$ $z \operatorname{coscos}\left(\frac{1}{z}\right) = z - \frac{1}{2z} + \frac{1}{24z^2} - \dots$ Residue of z = 0= coefficient of $\frac{1}{7-0} = \frac{1}{7}$ $=\frac{-1}{2}$ (3)clearly $\frac{1}{z} = \frac{1}{x+iy}$ $=\frac{1}{x+iy} \times \frac{x-iy}{x-iy}$ $=\frac{x-iy}{x^2+y^2}$ $=\frac{x}{x^2+v^2}-i\frac{y}{x^2+v^2}$ $\therefore \operatorname{Re}\left(\frac{1}{z}\right) = \frac{x}{x^2 + v^2}$ $=\frac{1}{\pi}$ Method: 2 $u = \frac{x}{x^2 + y^2}$ $\frac{\partial u}{\partial x} = \frac{(x^2 + y^2) - x \cdot 2x}{(x^2 + y^2)^2}$ $=\frac{y^2-x^2}{(x^2+y^2)^2}$ $\frac{\partial u}{\partial x}(z, 0) = \frac{0^2 - z^2}{(z^2 + 0^2)^2} = \frac{-z^2}{z^4} = \frac{-1}{z^2}$ Now, $\frac{\partial u}{\partial y} = \frac{0 - x \cdot 2y}{(z^2 + 0^2)^2} = \frac{-2xy}{(x^2 + y^2)^2}$ $\frac{\partial u}{\partial v}(z, 0) = \frac{-2.z.0}{(z^2+0^2)^2}$ = 0

Functions of Complex Variables and Complex Integration By Milne - Thompson method $f(z) = \int \left[\frac{\partial u}{\partial x} (z, 0) - i \frac{\partial u}{\partial y} (z, 0) \right] dz$ $= \int \left(\frac{-1}{z^2} - i 0 \right) dz$ $= -\int \frac{1}{z^2} dz = \frac{1}{z}$ $\therefore f(z) = \frac{1}{z}$ (4) Cauchy - Riemann equations of $f(z) = u(r, \theta) + iv (r, 0)$ $is \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = \frac{1}{r} \frac{\partial u}{\partial \theta}$

and $rv_r = -u_{\theta}$ 22. (4) w = f(z) is analytic then it is independent of 7 $\therefore \frac{\partial w}{\partial \overline{z}} = 0$ 23. (2)Let $u = 2x - x^2 + my^2$ $\frac{\partial u}{\partial x} - 2 - 2x$ $\frac{\partial^2 u}{\partial x^2} = -2$ $\frac{\partial u}{\partial y} = 2my$ $\frac{\partial^2 u}{\partial v^2} = 2m$ Given u is harmonic $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ $\Rightarrow -2 + 2m = 0$ \Rightarrow m = 1 24. (3)w = z + 2 + 3iz = w - 2 - 3i|z| = 2

Download Study Materials on www.examsdaily.in

21.

 \Rightarrow ru_r = v₀

 $\Rightarrow |w - 2 - 3i| = 2$ $\Rightarrow |w - (2 + 3i)| = 2$

25. (1)

By Cauchy - Goursat theorem if f is analytic function in the region enclosed by the curve C, then $\int_{C} f(z)dz = 0$

f(z) = z + 1 is analytic in every region $\therefore f(z) = z + 1 \text{ is analytic inside C}$ $\therefore \int_{c} (z+1)dz = 0$ (3)

26. (

27.

28.

Result: Residue of f(z) at the pole z = a is $\lim_{x \to 0} (z-a) f(z)$ Let $f(z) = \frac{z^2}{z^2 + a^2}$ $= \frac{z^2}{(z+ai)(z-ai)}$ Residue at z = ai= $\frac{\lim_{z \to ai} (z - ai) f(z)}{\sum_{z \to ai} (z - ai)} f(z)$ $= \lim_{z \to ai} (z - ai) \frac{z^2}{(z+ai)(z-ai)}$ $= \frac{\lim_{z \to ai} \frac{z^2}{(z+ai)}}{z}$ $=\frac{(ai)^2}{ai+ai}$ $=\frac{(ai)^2}{2ai}$ $=\frac{ai}{2}$ (2)CR equations are $u_x = v_y$; $u_y = -v_x$ i.e. $u_x = v_y$, $v_x = -u_y$ (3)By CR equations $u_x = v_y$; $u_y = -v_x$ ∴v_m

since u is constant \Rightarrow u_x = 0 and u_y = 0 By CR equations $0 = u_x = v_v$ $\Rightarrow v_v = 0$(1) Also $0 = u_v = -v_x$ $\Rightarrow v_x = 0$(2) By (1) and (2) v is a constant. 29. (2)Let z = x + iythen $\overline{z} = x - iy$ $f(z) = z\overline{z}$ = (x + iy) (x - iy) $= x^2 + y^2 = u + iv$ \Rightarrow u = x² + y² $\mathbf{v} = \mathbf{0}$ \Rightarrow u_x = $\frac{\partial u}{\partial x}$ = 2x $u_y = \frac{\partial u}{\partial y} = 2y$ $v_x = \frac{\partial v}{\partial x} = 0$ $v_y = \frac{\partial v}{\partial y} = 0$ Clearly $u_x \neq v_v$ $u_v \neq v_x$: C.R equations are not satisfied. \therefore f(z) is nowhere analytic. 30. (3) If f(z) is analytic then $f'(i) = u_x + iv_x$ $= v_v - iu_v$ 31. (3) Method -1 $\mathbf{v} = \mathbf{x}\mathbf{y}$ $\frac{\partial v}{\partial x} = y; \frac{\partial v}{\partial y} = x$

Download Study Materials on www.examsdaily.in

 $\frac{\partial v}{\partial x}(z,0) = 0; \frac{\partial v}{\partial y}(z,0) = z$ By Milne - Thompson method $f(z) = \int \left[\frac{\partial v}{\partial y}(z,0) + i \frac{\partial v}{\partial x}(z,0) \right] dz$ $\int (z + i0) dz$ $=\frac{z^2}{2}$ Method: 2 From the given choices if $f(z) = \frac{z^2}{2}$ then $f(z) = \frac{z^2}{2} = \frac{(x+iy)^2}{2}$ $=\frac{x^2-y^2+2ixy}{2}$ $=\frac{x^2-y^2}{2}+i2xy$ = u + iv \Rightarrow v = xy So required analytic function $f(z) = \frac{z^2}{2}$ (3) Let $f(z) = P(r, \theta) + i(Q(r, \theta))$ then Polar form of Cauchy-Riemann equations are

$$\frac{\partial P}{\partial r} = \frac{1}{r} \frac{\partial Q}{\partial \theta}$$
$$\frac{\partial Q}{\partial r} = \frac{1}{r} \frac{\partial P}{\partial \theta}$$

33. (3)

32.

Result :
If
$$z = x + iy$$
 and $w = f(z)$
then $\frac{dw}{dz} = \frac{\partial w}{\partial x}$
 $\therefore \frac{dw}{dx} = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$

34. (3)

Result: If f(z) = u+iv is an analytic function then both u and v are harmonic functions.

35. (1)

Cauchy's Theorem : If a function f(z) is analytic at all points inside and on a closed curve C then $\int_{C} f(z) dz = 0$ Let $f(z) = \frac{z^2}{z+3}$ clearly f(z) is not analytic at z = -3But this point lies outside the circle |z|=2Hence, f(z) is analytic at all points interior and on the closed curve C Where C is |z|=2Hence, by Cauchy's theorem $\int_{C} f(z) dz = 0$ i.e., $\int_{c} \frac{z^2}{z+3} dz = 0$ (2) $e^{t/z} = 1 + \frac{\left(\frac{1}{z}\right)}{11} + \frac{\left(\frac{1}{z}\right)^2}{21} + \frac{\left(\frac{1}{z}\right)^3}{21}$ $=1+\frac{1}{z}+\frac{1}{2x^2}+\frac{1}{6z^2}+\cdots$

 $z = 2x^{2} = 6z^{2}$ Residue of $e^{t/z}$ at z = 0 $= \text{coefficient of } \frac{1}{(z-0)} = \frac{1}{z}$ in the series expansion of $e^{t/z} = 1$

(4)

36.

Let
$$f(z) = |z|^2$$

where $z = x + iy$
 $|z|^2 = x^2 + y^2$
then $f(z) = |z|^2$
 $= x^2 + y^2$
 $= (x^2 + y^2) + i 0$

Download Study Materials on www.examsdaily.in

11

Let
$$f(z) = u + iv$$

then $u = x^2 + y^2$; $v=0$
 $\frac{\partial u}{\partial x} = 2x$; $\frac{\partial u}{\partial y} = 2y$
 $\frac{\partial v}{\partial x} = 0$; $\frac{\partial v}{\partial y} = 0$
 $\therefore \frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}$
and $\frac{\partial u}{\partial y} \neq \frac{\partial v}{\partial x}$
C.R. equation is not satisfied
So $f(z) = |z|^2$ is not analytic.
38. (1)
If $f(x) = u + iv = -\frac{iz^2}{2} + ic$
then
 $f(z) = \frac{-i(x+iy)^2}{2} + ic$
 $= \frac{-i(x^2-y^2+2ixy)}{2} + ic$
 $= xy + i\left[\frac{y^2-x^2}{2}\right] + c$
 \therefore if $f(z) = \frac{-iz^2}{2} + ic$
Then, the real part is xy
39. (2)
If $w = \frac{i}{z}$ then
when $z = 1$, $w = \frac{i}{1} = i$
when $z = x$, $w = \frac{i}{0} = 0$
 \therefore Required bilinear transform is $w = \frac{i}{z}$
40. (1)
By Cauchy - Reimann equations if $w = u + iv$ is an analytic function then,
 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}$
41. (2)

Invariant points are given by

Download Study Materials on www.examsdaily.in

$$z = \frac{1+iz}{1-iz}$$

$$\Rightarrow 1 + iz = z(1-iz)$$

$$\Rightarrow 1 + iz = z - iz^{2}$$

$$\Rightarrow iz^{2} + iz - z + 1 = 0$$

$$\Rightarrow iz^{2} + z(i-1) + 1 = 0$$

$$\therefore z = \frac{-(i-1)\pm\sqrt{(i-1)^{2}-4i}}{2i}$$

$$= \frac{-(i-1)\pm\sqrt{-1+1-2i-4i}}{2i}$$

$$= \frac{1}{2} \left[\frac{-(i-1)\pm\sqrt{-1+1-2i-4i}}{i} \right]$$

$$= \frac{1}{2} \left[-(i-1) \times (-i) \pm (-i)\sqrt{-6i} \right]$$

$$\left(\because \frac{1}{i} = -i \right)$$

$$= -\frac{1}{2} \left[(-i^{2} + i) \pm \sqrt{i^{2}(-6i)} \right]$$

$$= -\frac{1}{2} \left[(1 + i) \pm \sqrt{6i} \right]$$
(1)
Critical points are given by $\frac{dw}{dz} = 0$ and $\frac{dw}{dz} = \infty$

$$\frac{dz}{dz} = \infty$$

$$W = z + \frac{1}{z}$$

$$\frac{dw}{dz} = 1 - \frac{1}{z^2}$$

$$\frac{dw}{dz} = 0 \Rightarrow 1 - \frac{1}{z^2} = 0$$

$$\Rightarrow z^2 = 1$$

$$\Rightarrow z = 1$$

$$\frac{dw}{dz} = \infty \Rightarrow 1 - \frac{1}{z^2} = \infty$$

$$\Rightarrow \frac{1}{z^2} = \infty$$

$$\Rightarrow z = 0$$

$$\therefore 1 \text{ and } 0 \text{ are the critical points.}$$

42.

$$\frac{\frac{1}{(z-2)}e^{\frac{1}{z-1}}}{\frac{1}{(z-2)^2}\left[1+\frac{1}{(z-1)}+\frac{1}{2!(z-1)^2}+\frac{1}{3!(z-1)^3}+\cdots\right]}$$

12

The principal part contains infinite number of terms. So, z = 1 is an essential singularity.

44. (3)

Cauchy's Residue theorem :

 $\int_{c} f(z) dz = 2\pi i \times \text{sum of all residues of } f(z)$ inside C

Poles of f(z) are z=1 and z=2 Clearly z=1 and z = 2 lies inside the circle |z| = 3Residue of f(z) at z = 1

$$= \lim_{z \to 1} (z - 1)f(z)$$

$$= \lim_{z \to 1} (z - 1) \frac{z^{2} + 1}{(z - 1)(z - 2)}$$

$$= \frac{1 + 1}{1 - 2} = \frac{2}{-1}$$
Residue at z=2
$$= \lim_{z \to 2} (z - 2)f(z)$$

$$= \lim_{z \to 2} (z - 2) \frac{(z^{2} + 1)}{(z - 1)(z - 2)}$$

$$= \frac{4 + 1}{2 - 1} = 5$$
By Cauchy Residue theorem
$$\therefore \int_{c} f(z)dz = 2\pi i \times \text{ sum of residues inside}$$

$$|z|=3$$

$$= 2\pi i \times (-2 + 5)$$

$$= 6\pi i$$

$$\therefore \int_{|x|=3} \frac{z^{2} + 1}{(z - 1)(z - 2)} = 6\pi i$$
(2)
If $z = e^{x} \sin y dz$

then $\frac{\partial z}{\partial x} = e^x \sin y$ $\frac{\partial^2 z}{\partial x^2} = e^x \sin y$ $\frac{\partial z}{\partial y} = e^x \cos y$ $\frac{\partial^2 z}{\partial y^2} = e^x \sin y$ $\therefore \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = e^x \sin y - e^x \sin y = 0$ \therefore e^xsin y is a harmonic function 46. (1) $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = 0$ is not true 47. (2)If $w = \frac{i}{z}$ then $w = \frac{i}{z}$ Ζ 1 i i 1 ∞ 0 \therefore w = $\frac{i}{z}$ is the required transform. 48. (3) $w = z^2 - 3z + 2$ $\frac{dw}{dz} = 2z-3$ Critical points is given by $\frac{dw}{dz} = 0$ $\Rightarrow 2z - 3 = 0$ $\Rightarrow z = \frac{3}{2}$ 49. (2) $u = x^2 - y^2$ $\frac{\partial u}{\partial x} = 2x; \frac{\partial u}{\partial x}(z,0) = 2z$ $\frac{\partial u}{\partial y} = -2y; \frac{\partial u}{\partial y}(z, 0) = 0$ By Milne Thompson method function

f(z)

13

Follow us on FB for exam Updates: ExamsDaily

analytic

Download Study Materials on www.examsdaily.in

45.

Functions of Complex Variables and Complex Integration

having
$$u = x^2 - y^2$$
 as real part

$$f(z) = \int \left[\frac{\partial u(z,0)}{\partial x} - i\frac{\partial u}{\partial y}(z,0)\right] dz$$

$$= \int (2z - 0) dz$$

$$= z^2$$
Let $f(z) = u + iv$
then $u + iv = z^2$

$$= (x + iy)^2$$

$$= x^2 - y^2 + i2xy$$

$$\therefore v = 2xy$$
50. (2)
Formula:
If $w = f(z)$
then $\frac{dw}{dz} = \frac{\partial w}{\partial x}$ and
 $\frac{dw}{dz} = -i\frac{\partial w}{\partial y}$
51. (1)
Let $f(z) = u + iv$
If $f(z) = \frac{-iz^2}{2} + ic$
then $f(z) = \frac{-i(x+iy)^2}{2} + ic$

$$= \frac{-i(x^2 - y^2 + 2ixy)}{2} + ic$$

$$= xy + i\left(\frac{y^2 - x^2}{2} + c\right)$$

$$\therefore u = xy$$
So if $f(z) = \frac{-iz^2}{2} + ic$ then the real part is xy.
52. (3)
If $(w_1, w_2, w_3, w_4) = (z_1, z_2, z_3, z_4)$
then
 $\frac{(w_1 - w_2)(w_3 - w_4)}{(w_2 - w_3)(w_4 - w_1)} = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_2 - z_3)(z_4 - z_1)}$
we have $(z, 0, 1, \infty) = (w, -1, -i, 1)$

$$\Rightarrow \frac{(z - 0)(1 - 0)}{(z - \infty)(1 - 0)} = \frac{(w + 1)(-i - 1)}{(z - \infty)}$$
Now

Download Study Materials on www.examsdaily.in

$$\frac{1-\infty}{z-\infty} = \lim_{t \to \infty} \left(\frac{1-t}{z-t}\right)$$

$$= \lim_{t \to \infty} \frac{1}{z-1}$$

$$= 1$$
Now (1) \Rightarrow

$$\left(\frac{w+1}{w-1}\right) \left(\frac{-(1+i)^2}{2}\right) = z$$

$$\Rightarrow \frac{w+1}{w-1} (-i) = z$$

$$\Rightarrow \frac{w+1}{w-1} = iz$$

$$\Rightarrow w + 1 = iz (w - 1)$$

$$\Rightarrow w = \frac{iz+1}{iz-1}$$

$$= \frac{i(z+\frac{1}{i})}{i(z-\frac{1}{i})}$$

$$= \frac{z-i}{z+i}$$

$$\therefore \text{ Required bilinear transform w} = \frac{z-i}{z+i}$$
53. (4)
Cauchy's Residue theorem
$$\int_c f(z)dz = 2\pi i \times \text{ sum of residues inside C}$$

$$\frac{|z+1|=1}{\sqrt{-2}} \xrightarrow{\sqrt{-1}} \sqrt{\sqrt{-1}} \xrightarrow{\sqrt{-1}} x$$

$$|z+1| = 1 \Rightarrow |z - (-1) = 1$$
is a circle with centre $z = -1$ and radius $= 1$
Let $f(z) = \frac{z^2+1}{z^2-1}$

$$= \frac{z^2+1}{(z+1)(z-1)}$$
Below $z = 1 = 1$

Poles -z = 1, -1 z = -1 lies inside |z+1| = 1Residue at z = -1 $= \lim_{z \to -1} (z + 1)f(z)$

$$= \lim_{z \to -1}^{\lim} (z+l)f(z)$$

Follow us on FB for exam Updates: ExamsDaily

14

54.

55.

$$= \lim_{z \to -1} (z+1) \frac{z^{2}+1}{(z-1)(z+1)}$$

$$= \lim_{z \to -1} \frac{z^{2}+1}{z-1}$$

$$= \frac{2}{-2} = -1$$
By Cauchy's residue theorem
 $\therefore \int_{c} f(z)dz = 2\pi i \times -1$
 $= -2\pi i$
(1)
 $w = z-1$
then $z-4 = w-3$
 $f(z) = \frac{1}{z-4} = \frac{1}{w-3}$
 $= \frac{1}{w(1-\frac{3}{w})}^{-1}$
 $= \frac{1}{w} \left(1 + \frac{3}{w} + \frac{3^{2}}{w^{2}} + \cdots\right)$
 $= \frac{1}{w} + \frac{3}{w^{2}} + \frac{3^{2}}{w^{3}} + \cdots$
 $\Rightarrow \operatorname{Coefficient} \operatorname{of} \frac{1}{(z-1)^{2}} = 3$
(3)
 $w = f(z) = e^{x} \cos y + ie^{x} \sin y$
 $w = u + iv$
 $= e^{x} (\cos y + i \sin y)$
 $u = e^{x} \cos y$
 $v = e^{x} \sin y$
 $\frac{\partial u}{\partial x} = e^{x} \sin y$
 $\frac{\partial u}{\partial y} = -e^{x} \sin y$
 $\frac{\partial u}{\partial y} = e^{x} \cos y$
 $\therefore \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$
 $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$
C.R. equations are satisfied

 \therefore f(z) is analytic everywhere in the complex plane.

56. (4)
Let
$$u = P+Q$$

 $v = Q-P$
by C R. equations
 $u_x = v_y$
 $u_y = -v_x$
 $\therefore \frac{\partial^P}{\partial x} + \frac{\partial Q}{\partial y} = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}$ (1)
 $\frac{\partial P}{\partial y} + \frac{\partial Q}{\partial y} = -\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial x}$
 $\Rightarrow \frac{\partial P}{\partial x} - \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} + \frac{\partial Q}{\partial y}$ (2)
(1) + (2)
 $\Rightarrow 2\frac{\partial P}{\partial x} = 2\frac{\partial Q}{\partial y}$ (3)
(1) - (2) \Rightarrow
 $2\frac{\partial Q}{\partial x} = -2\frac{\partial P}{\partial y}$
 $\Rightarrow \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ (4)
by (3) and (4)
f(z) = P + iQ satisties
C.R. equations
 $\therefore P + iQ$ is an analytic function
57. (2)
A function w=f(z) is not confoltnui z_0 then
 $\frac{dw}{dz} = f^{*}(z_0)$ if $z_0 = -\frac{d}{a}$
then f(z) is not analytic.
58. (3)
 $16x^2 + y^2 = 1$
 $\frac{x^2}{1/16} + y^2 = 1$
 $\frac{x^2}{(\frac{1}{4})^2} + \frac{y^2}{1} = 1$

Download Study Materials on www.examsdaily.in

y
(0,1)
(1/4,0)
(0,-1)
Let
$$f(z) dz = \int_c \frac{dz}{z^2+9}$$

 $= \int_c \frac{dz}{(z+3i)(z-3i)}$
The points $z = 3i$, -3i lies outside C
 \therefore By Cauchy Goursattheoem
 $\int_c f(z)dz = 0 \Rightarrow \int_c \frac{dz}{z^2+9} = 0$
59. (3)
 $e^{1/2} = 1 + \frac{1}{z} + \frac{1}{2! z^2} + \frac{1}{3! z^3} + \cdots$
 $= 1 + \frac{1}{(z-0)} + \frac{1}{2(z-0)^2} = \frac{1}{6(z-0)^3} + \cdots$
since $\frac{1}{z-0}$ terms are infinite, $z = 0$ is an
essential singularity
60. (4)
Consider $f(z) = |z|^2$
 $= x^2 + y^2$
if $f(z) = u + iv$ then
 $u = x^2 + y^2; v = 0$
 $\frac{\partial u}{\partial x} = 2x; \frac{\partial u}{\partial y} = 2y$
 $\frac{\partial v}{\partial x} = 0; \frac{\partial v}{\partial y} = 0$
 $\therefore \frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} \neq \frac{-\partial y}{\partial x}$
C.R equation is not statistical
So $f(z) = |z|^2$ is not analytic
61. (1)

•••

62.

Functions of Complex Variables and **Complex Integration**

Let
$$J = \frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$$

$$= \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \frac{\partial v}{\partial x} \qquad \dots(1)$$
Given $w = u + iv$ is analytic
 \therefore w satisfies C.R. equation
i.e., $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$
 $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$
 $\therefore (1) \Rightarrow$
 $\frac{\partial u}{\partial x} \frac{\partial u}{\partial x} - \frac{\partial v}{\partial x} \left(-\frac{\partial v}{\partial x}\right)^2$

$$= \left|\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right|^2$$

$$= \left|\frac{\partial u}{\partial x}\right|^2 \left[\because \frac{dw}{dz} = \frac{\partial w}{\partial x}\right]$$
(3)
Given $u = e^x \sin y$
 $\frac{\partial u}{\partial y} = e^x \cos y$
If $v = -e^x \cos y + c^2$
then $\frac{\partial v}{\partial x} = -e^x \cos y$
 $\frac{\partial v}{\partial y} = e^x \sin y$
 $\frac{\partial u}{\partial x} = e^x \sin y$
 $\frac{\partial u}{\partial y} = e^x \sin y$
 $\frac{\partial v}{\partial y} = \frac{\partial v}{\partial y}$
 $\frac{\partial v}{\partial y} =$

Download Study Materials on www.examsdaily.in

16

63.

Functions of Complex Variables and Complex Integration

 $= x^{2} - y^{2} + 2ixy$ $\therefore u = x^{2} - y^{2}$ v = 2xywhen y = 1 $u = x^{2} - 1$ v = 2xEliminating x $u = \left(\frac{v}{2}\right)^{2} - 1$ $\Rightarrow \left(\frac{v}{2}\right)^{2} = u + 1$ $v^{2} = 4(u+1)$ This is a parabola with vertex (-1, 0)

64.

Let $f(z) = \frac{e^z}{z(z-\pi)}$ Poles are z = 0, π Clearly z = 0 lies inside |z - 1| = 2Res at $z = 0 = \lim_{z \to 0} (z - 0) f(z)$ $= \lim_{z \to 0} \frac{e^z}{z(z-\pi)}$ $= \frac{e^0}{0-\pi} = \frac{-1}{\pi}$ By Cauchy residue theorem $\int_c f(z)dz = 2\pi i \times \text{sum of the residues inside}$ C $\therefore \int_c \frac{e^z}{z(z-\pi)} dz = 2\pi i \times (\frac{-1}{\pi}) = -2i$

