Functions of Complex Variables and Complex Integration

1. Analytic function:

If a function $f(z)$ has a derivative at z_{o} and at every point in some neighbourhood of z_{0}, then $f(z)$ is said to be analytic at $z_{0} . f(z)$ is said to be analytic in a Domain D, if it is analytic at every point of D.
2. Cauchy - Riemann Equations:

The necessary conditions for a complex function $f(z)=u(x, y)+i v(x, y)$ to be analytic are

$$
\frac{\partial u}{\partial \mathrm{x}}=\frac{\partial \mathrm{v}}{\partial \mathrm{y}} ; \frac{\partial \mathrm{v}}{\partial \mathrm{x}}=\frac{-\partial \mathrm{u}}{\partial \mathrm{y}}
$$

i.e., $\mathrm{u}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}} ; \mathrm{v}_{\mathrm{x}}=-u_{y}$
3. Sufficient condition for $f(z)$ to be analytic The function $f(z)=u(x, y)+i v(x, y)$ is analytic in a domain D if
i) $u(x, y)$ and $v(x, y)$ are differentiable in D and $u_{x}=v_{y}$ and $u_{x}=-v_{x}$
ii) The partial derivatives u_{x}, u_{y}, v_{x} and v_{y} are all continuous in D.
4. Polar-form of Cauchy - Riemann equations
Let $f(z)=P(r, \theta)+i Q(r, \theta)$
Then,

$$
\frac{\partial \mathrm{P}}{\partial \mathrm{r}}=\frac{1}{\mathrm{r}} \frac{\partial \mathrm{Q}}{\partial \theta} \text { and } \frac{\partial \mathrm{Q}}{\partial \mathrm{r}}=-\frac{1}{\mathrm{r}} \frac{\partial \mathrm{P}}{\partial \theta}
$$

5. If $w=f(z)$ is analytic in a domain D then,
i) $\frac{d w}{d z}=\frac{\partial w}{\partial x}=-i \frac{\partial w}{\partial y}$
ii) $\frac{\partial^{2} w}{\partial z \partial z}=0$
iii) $\mathrm{f}^{\prime}(\mathrm{z})=\frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{i} \frac{\partial v}{\partial \mathrm{x}}=\frac{\partial v}{\partial \mathrm{y}}-\mathrm{i} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}$
6. If $f(z)=P(r, \theta)+i Q(r, \theta)$ is analytic, then $f^{\prime}(z)=e^{-I \theta}\left[\frac{\partial P}{\partial r}+i \frac{\partial Q}{\partial r}\right]$

$$
=\frac{1}{\mathrm{r}} \mathrm{e}^{-\mathrm{I} \theta}\left[\frac{\partial \mathrm{Q}}{\partial \theta}+\mathrm{i} \frac{\partial \mathrm{P}}{\partial \theta}\right]
$$

7. Construction of Analytic function Milne Thompson method:
If Real part $\mathrm{u}(\mathrm{x}, \mathrm{y})$ of an analytic function $f(z)$ is given then,

$$
\mathrm{f}(\mathrm{z})=\int\left\{\frac{\partial \mathrm{u}(\mathrm{z}, 0)}{\partial \mathrm{x}}-\mathrm{i} \frac{\partial \mathrm{u}(\mathrm{z}, 0)}{\partial \mathrm{y}}\right\} \mathrm{dz}+\mathrm{C}
$$

If Imaginary part $\mathrm{v}(\mathrm{x}, \mathrm{y})$ of $\mathrm{f}(\mathrm{z})$ is given, then,

$$
\mathrm{f}(\mathrm{z})=\int\left\{\frac{\partial \mathrm{v}(\mathrm{z}, 0)}{\partial \mathrm{y}}+\mathrm{i} \frac{\partial \mathrm{v}(\mathrm{z}, 0)}{\partial \mathrm{x}}\right\} \mathrm{dz}+\mathrm{C}
$$

8. Some Results:

i) $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$
ii) If $f(z)$ is analytic and $f(z)$ is constant then
a) $\mathrm{f}^{\prime}(\mathrm{z})=0$ everywhere
b) $\overline{f(z)}$ is also analytic
c) $R(f(x))$ is a constant
d) $|f(z)|$ is constant
iii) $f(z)=\bar{z} i s ~ n o w h e r e ~ d i f f e r e n t i a b l e . ~$
iv) $f(z)=|z|^{2}$ Is differentiable only at the origin.
v) Both the real part and the imaginary parts of any analytic function satisfies Laplace equation.
i.e., If $f(z)=u+i v$ is analytic then,

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \\
& \frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0
\end{aligned}
$$

vi) Any function which has continuous second order partial derivatives and which satisfies Laplace equation is called Harmonic function.
vii) If $f=u+i v$ is analytic function, then the curves $\mathrm{u}(\mathrm{x}, \mathrm{y})=\mathrm{c}_{1}$ cuts orthogonally the

Follow us on FB for exam Updates: ExamsDaily
curves $\mathrm{v}(\mathrm{x}, \mathrm{y})=\mathrm{c}_{2}$. where c_{1} and c_{2} are constants.
Mappings:

1. i) Translation : w. $=\mathrm{z}+\mathrm{c}$
ii) Rotation: $w=e^{i \alpha} z$
iii) Contraction: w = kz

Where k is real and positive constant
iv) Rotation and magnification map: $\mathrm{w}=\mathrm{cz}$ Where c is complex constant
v) Inverse and reflection: $w=\frac{1}{z}$
vi) Linear transformation $w=a z+b$.

2. Conformal mapping:

Suppose a mapping $\mathrm{f}(\mathrm{z})$ preserves angles both inmagnititude and direction between every pair of curves through a point then $f(z)$ is said to be conformal at that point.
3. $\quad \mathrm{f}(\mathrm{z})$ is said to be isogonalif it preserves themagnitudes of the angles but not the direction.,
4. At each point of the domain D where $f(z)$ is analytic and $f^{\prime}(z) \neq 0$, then the mapping $w=$ $\mathrm{f}(\mathrm{z})$ is conformal.
5. Necessary condition for $w=f(z)$ to represent a conformal mapping :
If the mapping $w=f(z)$ is conformal then $f(z)$ isan analytic function of z.
6. Bilinear transformation: $\mathrm{w}=\frac{\mathrm{az}+\mathrm{b}}{\mathrm{cz}+\mathrm{d}} \mathrm{ad}-\mathrm{bc} \neq 0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d arecomplex constants is called a bilineartransformation.
7. Any bilinear transformation can be expressed as a product of translation, rotation, magnification orcontraction and inversion.
8. Any bilinear transformation maps the totality of circles and straight lines in the zplane onto the totality of circles and straight lines in the w-plane.

9. Fixed points:

There are two points in the z-plane which will transform into themselves in w-plane.
The fixed points of the bilinear transform $\mathrm{w}=\frac{\mathrm{az}+\mathrm{b}}{\mathrm{cz}+\mathrm{d}}$ is given by $\mathrm{z}=\frac{\mathrm{az}+\mathrm{b}}{\mathrm{cz}+\mathrm{d}}$
10. If $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}, \mathrm{z}_{4}$ are distinct points taken in order then the cross ratio of these points is

$$
\frac{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}{\left(z_{2}-z_{3}\right)\left(z_{4}-z_{1}\right)}
$$

11. To find the bilinear transformation that maps $\mathrm{z}_{1}, \mathrm{z}_{2}$ and z_{3} onto $\mathrm{w}_{1}, \mathrm{w}_{2}$ and w_{3} respectively is

$$
\frac{\mathrm{w}-\mathrm{w}_{1}}{\mathrm{w}_{2}-\mathrm{w}_{1}} \frac{\mathrm{w}_{2}-\mathrm{w}_{3}}{\mathrm{w}-\mathrm{w}_{3}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{z}-\mathrm{z}_{3}} \frac{\mathrm{z}_{2}-\mathrm{z}_{3}}{\mathrm{z}_{2}-\mathrm{z}_{1}}
$$

12. Normal formation of a bilinear transformation:
i) When there are two non-infinite fixed points, α, β then the bilinear transform is

$$
\frac{w-\alpha}{w-\beta}=k \frac{z-\alpha}{z-\beta}
$$

ii) Suppose α is a fixed point then the bilineartransform is $\frac{1}{\mathrm{w}-\alpha}=\frac{1}{\mathrm{z}-\alpha}+\mathrm{k}$

Complex integration:

1. Cauchy's integral theorem (or) Cauchy's fundamental theorem :
If a function $\mathrm{f}(\mathrm{z})$ is analytic at all points insideand on a closed contour C , then $\int_{C} f(z) d z=0$
2. Cauchy's integral formula:

If $f(z)$ is analytic inside and on a closed curve C of a simply - connected domain D and if a is any point within D, then

$$
\mathrm{f}(\mathrm{a})=\frac{1}{2 \pi \mathrm{i}} \int_{\mathrm{C}} \frac{\mathrm{f}(\mathrm{z}) \mathrm{dz}}{\mathrm{z}-\mathrm{a}}
$$

3. If $f(z)$ is analytic inside the domain D bounded by C,then

Follow us on FB for exam Updates: ExamsDaily

Functions of Complex Variables and Complex Integration

$$
\begin{aligned}
f^{\prime}(a) & =\frac{1}{2 \pi i} \int \frac{f(z) d z}{(z-a)^{2}} \\
f^{\prime \prime}(a) & =\frac{2!}{2 \pi i} \int \frac{f(z) d z}{(z-a)^{3}} \\
f^{n}(a) & =\frac{n!}{2 \pi i} \int \frac{f(z) d z}{(z-a)^{n+1}}
\end{aligned}
$$

4. Taylor's series:

If a function $f(z)$ is analytic inside a circle C with centre at a, then

$$
\begin{aligned}
f(z)=f(a)+ & f^{\prime}(a)(z-a)+\frac{f^{\prime \prime}(a)}{2!}(z-a)^{2} \\
& +\frac{f^{\prime \prime \prime}(a)}{3!}(z-a)^{3}+\cdots \\
& +\frac{f^{n}(a)}{n!}(z-a)^{n}+\cdots
\end{aligned}
$$

5. Maclaurin series:

Put $\mathrm{z}=0$ in Taylor's series
$f(z)=f(0)+z f^{\prime}(0)+\frac{z^{2}}{2!} f^{\prime \prime}(0)+\ldots . .$.
$+\frac{\mathrm{z}^{\mathrm{n}}}{\mathrm{n}!} \mathrm{f}^{\mathrm{n}}(0)+$ \qquad

6. Laurent's series:

If $f(z)$ is analytic in the annulus (ring shaped region) between two concentric circles C_{1} and C_{2} with centre at a and radii R_{1} and R_{2} $\left(R_{1}>R_{2}\right)$ for any point z in the annulus
$f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{(z-a)^{n}}$
Where, $a_{n}=\frac{1}{2 \pi \mathrm{i}} \int_{C_{1}} \frac{f(z)}{(z-a)^{n+1}} d z$ and

$$
\mathrm{b}_{\mathrm{n}}=\frac{1}{2 \pi \mathrm{i}} \mathrm{C}_{2} \frac{\mathrm{f}(\mathrm{z}) \mathrm{dz}}{(\mathrm{z}-\mathrm{a})^{1-\mathrm{n}}}
$$

7. Singular points:

If a function $f(z)$ is not analytic at $z=a$, then it is called a singular point or singularity of $\mathrm{f}(\mathrm{z})$.

8. Types of singularities:

i) Isolated singularity:

Let $z=a$ be a singular point of $f(z)$. If there is no other singular point in the
neighbourhood of $\mathrm{z}=\mathrm{a}$, then it is called isolated singular point.
ii) Removable singularity:

If the principal part of $f(z)$ in its Laurent's series contains no term, then the singularity $\mathrm{z}=\mathrm{a}$ is called removable singularity.
If $z=a$ is a removable singularity then, $\lim _{z \rightarrow a} f(z)$ exists.
iii) Essential singularity:

If the principal part of $f(z)$ in its Laurent's series contains Infinite number of terms, then $\mathrm{z}=$ ais called an essential singular point of $f(z)$.
iv) Poles:

If we can find positive Integer n such that $\underset{z \rightarrow a}{\text { It }}(z-a)^{n} f(z) \neq 0$ then $z=a$ is called a pole or order n for $\mathrm{f}(\mathrm{z})$.
A pole of order 1 is called a simple pole.
9. Entire function:

A $f(z)$ is analytic everywhere in the finite plane (except at infinity) is called an entire function. Example: $\mathrm{z}, \mathrm{e}^{\mathrm{z}}, \cos \mathrm{z}$
10. Meromorphic function:

A functionf(z) which is analytic everywhere in the finite plane except at finite number of poles is called a meromorphic function.

11. Residues :

The co-efficient b, of $\frac{1}{z-a}$ in the Laurent's seriesof $f(z)$ is called the residue of $f(z)$ at z = a
12. Cauchy's Residue theorem:

Let $f(z)$ be single valued analytic function within and on a closed contour C. except at a finitenumber of poles $_{1}, z_{2}, \ldots z_{n}$ within C and If $R_{1}, R_{1} \ldots \ldots . . . R_{n}$ be the residues of $f(z)$ at these poles respectively then,

Follow us on FB for exam Updates: ExamsDaily

Functions of Complex Variables and
 Complex Integration

$\int_{C} \mathrm{f}(\mathrm{z}) \mathrm{dz}=2 \pi \mathrm{i}\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\cdots+\mathrm{R}_{\mathrm{n}}\right)$
$=2 \pi i$ (Sum of the residues of poles within C)

13. Formulae to find Residues:

i) If $z=a$ is a simple pole of $f(z)$ then Residue of $f(z)$ at $z=a$ is $\lim _{z \rightarrow a}(z-a) f(z)$
ii) If $\mathrm{z}=\mathrm{a}$ is a pole of order n then

Residue of $f(z)$ at $z=a$ is
$\lim _{z \rightarrow a} \frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left[(z-a)^{n} f(z)\right]$
iii) If $f(z)=\frac{P(z)}{Q(z)}$ and $z=a$ is a pole of orderone, then Residue of $f(z)$ at $z=a$ is $\frac{P(z)}{Q^{\prime}(a)}$

Join Us on FB 5 :
English - Examsdaily Tamil - Examsdaily Tamil

Whatsapp Group
English - Click Here
Tamil - Click Here

