MODEL QUESTION PAPER – 5

with Detailed Solutions

1. Find the sum of the eigen values of A =

$$\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

3) -3

- 4) 5
- 2. Two eigen values of a 3×3 non singular matrix A are 2, 3 and |A| = 36. Then the third eigen value
 - 1)5

2) 6

3)7

- 4) 8
- 3. If some of the eigen values of a matrix A of the quadratic form are positive and others are negative then the quadratic form is
 - 1)positive definite
 - 2)indefinite
 - 3)positive semidefinitive
 - 4)negative semidefinitive
- 4. Final k so. that the rank of the matrix

$$\begin{bmatrix} 2 & 1 & -1 \\ 1 & 4 & 2 \\ 3 & 5 & k \end{bmatrix}$$
 is 2

1) 2

2) 4

3)4

- 5) 1
- 5. Find the nature of the quadratic form $6x^2+3y^2+14z^2+4yz+18xz+4xy$
 - 1) positive definite
 - 2) indefinite
 - 3) negative definite
 - 4) positive semidefinite
- 6. If $u = \frac{1}{r}$; $r^2 = x^2 + y^2 + z^2$ then $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial v^2} + \frac{\partial^2 u}{\partial z^2} = \frac{\partial^2 u}{\partial z^2} + \frac{\partial^2 u}{\partial z^2} = \frac{\partial^2 u}{\partial z^2} + \frac{\partial^2 u}{\partial z^2} + \frac{\partial^2 u}{\partial z^2} = \frac{\partial^2 u}{\partial z^2} + \frac{\partial^2 u}{\partial z^2} + \frac{\partial^2 u}{\partial z^2} + \frac{\partial^2 u}{\partial z^2} + \frac{\partial^2 u}{\partial z^2} = \frac{\partial^2 u}{\partial z^2} + \frac{\partial^2 u}{\partial z} + \frac{\partial^2 u}{\partial$
 - 1)0

3) 2

- 4) 3
- 7. The function f(x, y) has a minimum at (a, b) if

$$\frac{\partial f}{\partial x} = 0, \frac{\partial f}{\partial y} = 0$$
 and

$$1) \frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} - \frac{\partial^2 f}{\partial x \, \partial y} < 0$$

$$2)\frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 < 0$$

- 3) $\frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} \frac{\partial^2 f}{\partial x \partial y} < 0$ and $\frac{\partial^2 f}{\partial x^2} > 0$
- 4) $\frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} \frac{\partial^2 f}{\partial x \partial y} < 0$ and $\frac{\partial^2 f}{\partial x^2} > 0$
- - 1) $f(x^2,y^2)=0$ 2) $f(xy,\frac{y}{z})=0$ 3) $f(x^2+y^2,p^2)=0$ 4) None of these
- 4) None of these
- 9. Eliminating x from $\frac{dx}{dt} + 2y = 0$, $\frac{dy}{dt} 2x = 0$ is
 - $1) \frac{d^2 y}{dt^2} + 4y = 0$
- $2) \frac{d^2 y}{dt^2} 4y = 0$
- 3) $\frac{dy}{dt} + 4yx^2 = 0$ 4) $\frac{dy}{dt} + x + y = 0$
- 10. The equation $(e^y + 1)\cos x dx + e^y \sin x dy = 0$ is
 - 1) exact

- 2) variable separable
- 3) linear
- 4)solvable for x
- 11. The vector $\vec{F} = yzi + 2xj + xyk$ is
 - 1) irrotational
- 2) solenoidal

3) 0

- 4)1
- 12. If r = xi + yj + zk and $r = |\vec{r}|$ then $\nabla r^5 =$
 - 1) $5r^{3}\vec{r}$
- 2) $4r^{2}\vec{r}$

3) $5r^{4}\vec{r}$

- 4) $6r^{5}\vec{r}$
- 13. If A and B are irrotationalthen $\vec{A} \times \vec{B}$ is
 - 1) solenoidal
- 2) irrotational

3) 1

- 4)0
- 14. Find the directional derivative of $\phi = x^2 + y^2 + z^2$ at the point (2, 2, 1) in the direction of 2i+2j+k.
 - 1) 3

2) 6

3)9

- 4) 12
- 15. Evaluate $\int_{C} \frac{\cos \pi z^2}{(z-1)(z-2)} dz$ where C is the circle

 - 1) $2\pi i$

- $2) \pi i$
- 3) $-3\pi i$
- 4)0
- 16. Find the residue of $f(z)=\cot z$ at the pole z=0
 - 1) 10

2)3

3) 5

- 4) 1
- 17. Polar form of Cauchy-Riemann equation of f(z) = u + ivis

- 1) $\frac{\partial \mathbf{u}}{\partial \mathbf{r}} = \frac{1}{\mathbf{r}} \cdot \frac{\partial \mathbf{v}}{\partial \theta}$
- $2)\frac{\partial \mathbf{u}}{\partial \mathbf{r}} = \mathbf{r} \frac{\partial \mathbf{v}}{\partial \mathbf{\theta}}$
- $\frac{\partial \mathbf{v}}{\partial \mathbf{r}} = -\mathbf{r} \frac{\partial \mathbf{u}}{\partial \mathbf{\theta}}$
- 3) $\frac{\partial \mathbf{u}}{\partial \theta} = \frac{1}{\mathbf{r}^2} \frac{\partial \mathbf{u}}{\partial \mathbf{r}}$
- $\frac{\partial \mathbf{v}}{\partial \mathbf{r}} = -\mathbf{r} \frac{\partial \mathbf{u}}{\partial \mathbf{\theta}}$ $4) \frac{\partial \mathbf{u}}{\partial \mathbf{r}} = \frac{1}{\mathbf{r}} \frac{\partial \mathbf{v}}{\partial \mathbf{r}}$
- $\frac{\partial v}{\partial \theta} = \frac{1}{r^2} \frac{\partial u}{\partial r}$
- $\frac{\partial \mathbf{v}}{\partial \mathbf{\theta}} = \frac{1}{\mathbf{r}} \frac{\partial \mathbf{v}}{\partial \mathbf{\theta}}$
- 18. The function $f(z) = \bar{r}$ is
 - 1)analytic
 - 2)nowhere differentiable
 - 3) analytic at 0
 - 4) none of these
- 19. Find the residue of $f(z) = \frac{z}{z^2+4}$ at z = 2i
 - 1) 2

3)0

- 20. Error in the trapezoidal rule is of the order

2) h^{2}

3) h^{3}

- 4) $\frac{1}{2}$
- 21. Simpson's $\frac{1}{3}$ rule is called
 - 1) open formula
- 2) regular formula
- 3) indefinite formula
- 4) closed formula
- 22. In Simpson's $\frac{1}{3}$ rule the interval must bedivided into an number of subintervals of width h.
 - 1) odd

2) 5

3) even

- 23. Find the interpolation formula for

X	0	1	2	5
f(x)	2	3	12	147

- 1) x^3+x^2+X+2 3) x^3+x^2-x+2

- 4) $x^4 + x^3 x^2 + x 2$
- 24. By Simpson's $\frac{1}{3}$ rule to get a close approximation h will be
 - 1) very large
- 2) 0

3) 1

4) very small

- 25. Trapezoidal rule and Simpson's rule are ued to find
 - 1)Numerical integration
 - 2) Numerical partial differentiation
 - 3)Curve fitting
 - 4)Interploting polynomial
- 26. What is the chance that a leap year selected at random will contain 53 Sundays

- 27. A husband and wife appear In an Interview for two vacancies in the same post. The probability of husband selection is $\frac{1}{7}$ and wife's selection is $\frac{1}{5}$. Find the probability of only one of them will be selected.

- 28. If A and B are mutually exclusive events, then $P(A \cup B) =$
 - 1) $P\left(\frac{A}{R}\right)$
- 2) $P\left(\frac{B}{A}\right)$
- 3) P(A) + P(B)
- 29. $P(A+B) = \frac{3}{4}$; $P(AB) = \frac{1}{4}$ and $P(\overline{A}) = \frac{2}{3}$ Find P(B)

- 30. A book contains 100 misprints distributed randomly throughout its 100 pages. Assuming Poisson distribution of the number of misprints in a page, find the probability that a page observed at random contains atleast 2 misprints.
- 2) $1 \frac{2}{e^2}$ 4) $1 + \frac{2}{e}$
- 1) $1 + \frac{2}{e}$ 3) $1 \frac{2}{e}$

ANSWERS

1. 1	2. 2	3. 2	4. 4	5. 2	6. 1	7. 3	8. 2	9. 1	10. 1
11. 1	12. 1	13. 1	14. 2	15. 1	16. 4	17. 1	18. 2	19. 4	20. 2
21. 1	22. 3	23. 3	24. 4	25. 1	26. 3	27. 1	28. 3	29. 2	30. 3

DETAILED SOLUTIONS

1. (a)

Sum of the eigen values = trace of A

= sum of the main diagonal elements of A

- = -2 + 1 + 0
- = -1
- 2. (2)

Product of eigen values of a matrix A = |A|

Let a be the third eigen value

then $2\times3\times\alpha=36$

$$\Rightarrow \alpha = \frac{36}{6} = 6$$

3. (2)

If some eigen values are positive and some eigen value are negative then the quadratic form is called indefinite.

4. (4)

If rank of 3×3 matrix is 2 then |A| = 0

i.e.
$$\begin{vmatrix} 2 & 1 & -1 \\ 1 & 4 & 2 \\ 3 & 5 & k \end{vmatrix} = 0$$

- \Rightarrow 2(4k-10)-l(k-6)-l(5-12)=0
- = 8k-20-k+6-5+12=0
- $= 7k-7=0 \Rightarrow k = 1$
- 5. (2)

Matrix of the quadratic form $A = \begin{bmatrix} 6 & 2 & 9 \\ 2 & 3 & 2 \\ 9 & 2 & 14 \end{bmatrix}$

Consider the principal sub determinants

$$D_1 = |6| = 6 > 0$$

$$D_2 = \begin{vmatrix} 6 & 2 \\ 2 & 3 \end{vmatrix} = 18-4 = 14 > 0$$

- = 6(42-4)-2(28-18)+9(4-27)
- = 218-20-207
- = -9 < 0

 $D_1>0$, $D_3<0$ and $D_2>0$

Hence the quadratic form is indefinite.

6. (1)

$$f(r) = u = \frac{1}{r}$$

$$f'(r) = -\frac{1}{r^2}$$

$$f''(r) = \frac{2}{r^3}$$

Formula:

$$\frac{\partial^2 y}{\partial x^2} + \frac{\partial^2 y}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f''(r) + \frac{2f'(r)}{r}$$
$$= \frac{2}{r^3} + \frac{2}{r} \left(\frac{-1}{r^2}\right)$$
$$= \frac{2}{r^3} - \frac{2}{r^3} = 0$$

7. (2)

The function f(x, y) has a minimum at (a, b) if

$$\frac{\partial f}{\partial x} = 0, \frac{\partial f}{\partial y} > 0 \text{ and } \frac{\partial^2 f}{\partial x^2}. \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 > 0$$
and $\frac{\partial^2 f}{\partial x^2} > 0$

8. (2)

Formula:

$$-xp+yq=z$$

$$\Rightarrow \frac{dx}{-x} = \frac{dy}{y} = \frac{dz}{z}$$

From first two equations

$$\frac{dx}{-x} = \frac{dy}{y} = \frac{dz}{z}$$

$$\Rightarrow -\int \frac{dx}{x} = \int \frac{dy}{y}$$

 \Rightarrow log x = log y-log a

$$\Rightarrow xy = a$$

From last two equations

$$\frac{dy}{y} = \frac{dz}{z}$$

$$\Rightarrow \int \frac{dy}{y} = \int \frac{dz}{z}$$

 $\Rightarrow \log y = \log z + \log b$

$$\Rightarrow \frac{y}{z} = b$$

The solution is $f(xy, \frac{y}{z}) = 0$

9. (1)

$$\frac{dy}{dt}$$
 - $2x = 0$

$$\Rightarrow x = \frac{1}{2} \frac{dy}{dt}$$

$$Now \frac{dx}{dt} + 2y = 0$$

$$\Rightarrow \frac{d}{dt} \left(\frac{1}{2} \cdot \frac{dy}{dt} \right) + 2y = 0$$

$$\Rightarrow \frac{1}{2} \frac{d^2 y}{dt^2} + 2y = 0$$
$$\Rightarrow \frac{d^2 y}{dt^2} + 4y = 0$$

10. (1)

Compare with Mdx+Ndy

 $M=(e^y+1)\cos x$; $N=e^y\sin x$

$$\frac{\partial M}{\partial y} = e^y \cos x = \frac{\partial N}{\partial x} = e^y \cos x$$
clearly $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

∴Given equation is exact

11. (1)

$$\nabla \times \vec{F} = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz & zx & xy \end{vmatrix}$$

$$i(x-x)-j(y-y)+k(z-z)=0$$

 \vec{F} is irrotational

12. (1)

Formula:

$$\nabla r^{n} = nr^{n-2}\vec{r}$$

$$\nabla r^{5} - 5r^{3}\vec{r}$$

13. (1)

 \vec{A} and \vec{B} are irrotational

$$\Rightarrow \nabla \times \vec{A} = 0$$
 and $\nabla \times \vec{B} = 0$

Now
$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \overrightarrow{\mathbf{B}} \cdot (\nabla \times \overrightarrow{\mathbf{A}}) - \overrightarrow{\mathbf{A}} (\nabla \times \overrightarrow{\mathbf{B}}) = 0$$

 $\vec{A} \times \vec{B}$ is solenoidal.

14. (2)

$$\nabla \phi = \left(i \frac{\partial}{\partial x} + j \frac{\partial}{\partial j} + k \frac{\partial}{\partial z}\right) (x^2 + y^2 + z^2)$$

$$= i \frac{\partial}{\partial x} (x^2 + y^2 + z^2) + j \frac{\partial}{\partial y} (x^2 + y^2 + z^2) + k \frac{\partial}{\partial z} (x^2 + y^2 + z^2)$$

$$= 2xi + 2yj + 2zk$$

$$\nabla \phi (2, 2, 1) = 2(2)i + 2(2)j + 2(1)k = 4i + 4j + 2k$$

$$\hat{\mathbf{e}} = \text{unit vector in the direction of } 2i + 2j + k$$

$$= \frac{2i + 2j + k}{2i + 2j + k}$$

$$= \frac{2i + 2j + k}{\sqrt{4 + 4 + 1}}$$
$$= \frac{2i + 2j + k}{3}$$

Directional derivative of ϕ in the direction 2i+2j+2k

=
$$\nabla \phi . \hat{e}$$

= $(4i + 4j + 2k) . \left(\frac{2i+2j+k}{3}\right)$
= $\frac{1}{3}(8+8+2) = \frac{18}{3}$

= 6 15. (1)

Cauchy's Residue theorem:

If f(z) is analytic at all points inside and on a simple closed curve C except at a finite number of points $z_1, ..., z_n$ within C, then

 $\int_{C} f(z)dz = 2 7\pi i \times \text{sum of the residue of}$

$$f(z) \ at \ z_1, \, ..., \, z_n$$

Let
$$f(z)dz = \frac{\cos \pi z^2}{(z-1)(z-2)}$$

poles =
$$z=1, 2$$

z=1 lies inside
$$|z| = \frac{3}{2}$$

Residue of f(z) at z = 1

$$= \lim_{z \to 1} (z - 1)f(z)$$

$$= \lim_{z \to 1} (z - 1) \frac{\cos \pi z^2}{(z - 1)(z - 2)} = \frac{\cos \pi (1)^2}{1 - 2}$$

$$= \frac{-1}{-1} = 1$$

 $\int_{c} f(z)dz = 2\pi i \times \text{ sum of residues}$

$$=2\pi i \times 1 = 2\pi i$$

16. (4)

Formula:

Iff(z)=
$$\frac{\phi(z)}{\psi(z)}$$
 where

$$\psi(a)=0$$
 but $\phi(a)\neq 0$

then Residue at z=a is
$$\frac{\phi(a)}{\psi(a)}$$

EXAMS DAILY

ENGINEERING MATHEMATICS

Let
$$f(z) = \cot z = \frac{\cos z}{\sin z} = \frac{\phi(z)}{\psi(z)}$$

$$\psi(z) = \sin z$$

$$\psi'(z) = \cos z$$

Now
$$\psi(0) = \sin 0 = 0$$

$$(0) = \cos 0 = 1 \neq 0$$

 \therefore Residue of f(z) at z=0

$$= \frac{\phi(0)}{\psi'(0)} = \frac{1}{\cos 0}$$
$$= \frac{1}{1} = 1$$

17. (1)

Polar form of Cauchy-Rieman equation is

$$\frac{\partial \mathbf{u}}{\partial \mathbf{r}} = \frac{1}{\mathbf{r}} \cdot \frac{\partial \mathbf{v}}{\partial \theta}$$
$$\frac{\partial \mathbf{u}}{\partial \mathbf{r}} = \frac{-1}{\mathbf{r}} \cdot \frac{\partial \mathbf{v}}{\partial \theta}$$

18. (2)

$$f(z) = \overline{z} = \overline{x + iy} = x - iy$$

$$\frac{\partial \mathbf{v}}{\partial \mathbf{x}} = 0; \frac{\partial \mathbf{v}}{\partial \mathbf{v}} = -1$$

Clearly
$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \neq \frac{\partial \mathbf{v}}{\partial \mathbf{v}}$$

:: Cauchy - Riemann equation is not Satisfied.

So $f(z) = \overline{z}is$ nowhere analytic.

19. (4)

Formula:

$$f(z) = \frac{z}{z^2 + 4} = \frac{z}{(z + 2i)(z - 2i)}$$

Residue at z=a is $\lim_{z \to a} (z - a) f(z)$

∴Residue at z=2i is
$$\lim_{z \to a} (z - 2i) \frac{z}{(z+2i)(z-2i)}$$

= $\frac{2i}{2i+2i} = \frac{2i}{4i} = \frac{1}{2}$

20. (2)

Error in the trapezoidal rule is of the order h^2 .

21. (1)

Simpson's $\frac{1}{3}$ rule is called a closed formula. Since the end point indicate also enter the formula.

22. (3)

In Simpson's $\frac{1}{3}$ rule the interval must be divided into an even number of subintervals of width h.

23. (3)

Consider $f(x)=x^3+x^2-x+2$

$$f(0) = 0 + 0 - 0 + 2 = 2$$

$$f(1) = 1 + 1 - 1 + 2 = 3$$

$$f(2) = 2^3 + 2^2 - 2 + 2 = 12$$

$$f(5) = 5^3 + 5^2 - 5 + 2 = 147$$

 \therefore Required polynomial is $f(x) = x^3 + x^2 - x + 2$

24. (4)

The smaller h is, the closer will be the approximation in Simpson's $\frac{1}{3}$ rule.

25. (1)

Trapezoidal and Simpson's rule are used in numerical integration.

26. (3)

A leap year contains 366 days. In 366 days there are 52 full weeks (hence 52 Sundays definitely) and

2 more days.

Those 2 days will be

- i) Monday and Tuesday
- ii) Tuesday and Wednesday
- iii) Wednesday and Thursday
- iv) Thursday and Friday
- v)Friday and Saturday
- vi)Saturday and Sunday
- vii) Sunday and Monday

Out of these 7 cases (vi) and (vii) are two favourable cases.

 \therefore Required probability = $\frac{2}{7}$

27. (1)

Let A and B be the event that the husband and wife selection.

$$P(A) = \frac{1}{7} \text{ and } P(B) = \frac{1}{5}$$

$$P(\overline{A}) = 1 - \frac{1}{7} = \frac{6}{7}$$

$$P(\overline{B}) = 1 - \frac{1}{5} = \frac{4}{5}$$

Required probability

 $= P(A)P(\overline{B}) + P(\overline{A})P(B)$

$$= \frac{1}{7} \cdot \frac{4}{5} + \frac{6}{7} \cdot \frac{1}{5}$$
$$= \frac{4}{35} + \frac{6}{35} = \frac{10}{35} = \frac{2}{7}$$

28. (3)

If A and B are mutually exclusive events, then $P(A \cup B) = P(A) + P(B)$

29. (2)

$$P(A) = 1-P(\overline{A}) = 1-\frac{2}{3} = \frac{1}{3}$$
Now $P(A+B) = P(A) + P(B)-P(AB)$

$$\Rightarrow \frac{3}{4} = \frac{1}{3} + P(B) - \frac{1}{4}$$

$$\therefore P(B) = \frac{3}{4} - \frac{1}{3} + \frac{1}{4} = \frac{2}{3}$$

30. (3)

$$\lambda = \frac{100}{100} = 1$$

$$P(X=x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

$$P(X \ge 2) = 1 - (P(X=0) + P(x=1))$$

$$=1-\left[\frac{e^{-\lambda}\lambda^0}{0!}+\frac{e^{-\lambda}\lambda^1}{1!}\right]$$

$$=1-[e^{-\lambda}+\lambda e^{-\lambda}]$$

$$= 1 - e^{-1} (1+1)$$

$$=1-\frac{2}{e}$$

English – **Examsdaily**

Tamil – **Examsdaily Tamil**

Whatsapp Group

English - Click Here

Tamil - Click Here