Determinants and Matrices

1. The rank of a matrix A is said to be r if A satisfies the following conditions.
i) There exists an r x r sub-matrix whose determinant is not zero.
ii) The determinant of every $(\mathrm{r}+1) \mathrm{x}(\mathrm{r}+1)$ submatrix is zero.
2. Minor of a matrix A is the determinant formed by the elements of the matrix left after striking out certain rows and columns.
3. Consider the system of equations.

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} \\
\text { Let } A=\left[\begin{array}{cccc}
a_{11} & a_{12} \cdots & a_{1 n} \\
a_{21} & a_{22} \cdots & a_{2 n} \\
a_{m 1} & a_{m 2} \cdots & a_{m n}
\end{array}\right] \\
{[A, B]=\left[\begin{array}{cccc}
a_{11} & a_{12} \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} \cdots & a_{2 n} & b_{2} \\
a_{m 1} & a_{m 2} \cdots & a_{m n} & b_{m}
\end{array}\right]}
\end{gathered}
$$

Let the rank of A be $R(A)$ and rank of [A, B] be R [A, B].
i) The system $A X=B$ is consistent if and only if $R(A)=R(A, B)$
ii) If $R(A)=R(A, B)=n$ (the number of unknowns), then the given system of equations is consistent and have unique solutions.
iii) If $\mathrm{R}(\mathrm{A})=\mathrm{R}(\mathrm{A}, \mathrm{B})<\mathrm{n}$ then the given system of linear equations is consistent and have infinite number of solutions.
iv) If $R(A) \neq R(A, B)$, then the given system is not consistent (inconsistent) and have no solutions.

4. Consider the system of equations :

$$
\begin{aligned}
& a_{11} x+a_{12} y+a_{13} z=b_{1} \\
& a_{21} x+a_{22} y+a_{23} z=b_{2}
\end{aligned}
$$

$$
\begin{aligned}
& a_{31} x+a_{32} y+a_{33} z=b_{3} \\
& \text { Let } \Delta=\left|\begin{array}{lll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{a}_{31} & \mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right| \\
& \Delta_{\mathrm{x}}=\left|\begin{array}{lll}
\mathrm{b}_{1} & \mathrm{a}_{12} & \mathrm{a}_{13} \\
\mathrm{~b}_{2} & \mathrm{a}_{22} & \mathrm{a}_{23} \\
\mathrm{~b}_{3} & \mathrm{a}_{32} & \mathrm{a}_{33}
\end{array}\right| \\
& \Delta_{\mathrm{y}}=\left|\begin{array}{lll}
\mathrm{a}_{11} & \mathrm{~b}_{1} & \mathrm{a}_{13} \\
\mathrm{a}_{21} & \mathrm{~b}_{2} & \mathrm{a}_{23} \\
\mathrm{a}_{31} & \mathrm{~b}_{3} & \mathrm{a}_{33}
\end{array}\right| \\
& \Delta_{\mathrm{z}}=\left|\begin{array}{lll}
\mathrm{a}_{11} & \mathrm{a}_{12} & \mathrm{~b}_{1} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \mathrm{~b}_{2} \\
\mathrm{a}_{31} & \mathrm{a}_{32} & \mathrm{~b}_{3}
\end{array}\right|
\end{aligned}
$$

i) If $\Delta \neq 0$, the system is consistent and has unique solution.
Solutions are:
$\mathrm{x}=\frac{\Delta_{\mathrm{x}}}{\Delta}, \mathrm{y}=\frac{\Delta_{\mathrm{y}}}{\Delta}, \mathrm{z}=\frac{\Delta_{\mathrm{z}}}{\Delta}$
ii) If $\Delta=0$ and atleast one of the values of $\Delta_{\mathrm{x}}, \Delta_{\mathrm{y}}, \Delta_{\mathrm{z}}$ is non-zero then the system has no solution.
iii) If $\Delta=0, \Delta_{\mathrm{x}}=\Delta_{\mathrm{y}}=\Delta_{\mathrm{z}}=0$ and atleast one of the (2×2) minor of Δ is nonzero or atleast one of the element of Δ is non-zero, then the system is consistent and has infinitely many solutions.

Determinants and Matrices

5. Homogeneous system of linear equations :

A system of homogeneous linear equations are as follows:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{2} \\
\text { Let } A=\left[\begin{array}{ccc}
a_{11} & a_{12} \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{2 n} \\
\vdots & a_{m 2} & a_{m n}
\end{array}\right] \\
a_{m 1} \\
{[A, B]=\left[\begin{array}{cccc}
a_{11} & a_{12} \cdots & a_{1 n} & 0 \\
a_{21} & a_{22} \cdots & a_{2 n} & 0 \\
\vdots & a_{m 2} \cdots & a_{m n} & 0
\end{array}\right]}
\end{gathered}
$$

Clearly, rank of $\mathrm{A}=$ rank of the augmented matrix [A, B].
i) The system of homogeneous equations is always consistent and obviously $\mathrm{x}_{1}=$ $\mathrm{x}_{2}=\ldots \ldots . \mathrm{x}_{\mathrm{n}}=0$ is a trivial solution.
ii) If rank $(\mathrm{A}, \mathrm{B})=\operatorname{rank} \mathrm{A}=\mathrm{n}$ (the number of unknowns) then the trivial solution is the unique solution.
iii) If rank $(\mathrm{A}, \mathrm{B})=\operatorname{rank} \mathrm{A}<\mathrm{n}$ then the system has non-trivial solution. In this case $|\mathrm{A}|=0$
Consider the following system of homogeneous equations.

Download Study Materials on www.examsdaily.in
6. Eigen values and Eigen vectors :

For $\mathrm{n} \times \mathrm{n}$ square matrix A the equation $\mid \mathrm{A}$ $\lambda \mathrm{I} \mid=0$ is said to be the characteristic equation. The n roots of $\mid A-\lambda I)=0$ are calledeigen values (characteristic roots, proper values(or) latent roots). Suppose $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ be theeigen values of A, corresponding to each value of λ_{r} the equation $\mathrm{AX}=\lambda_{\mathrm{r}} \mathrm{X}$ has a non-zero solution vector X_{r}. It is said to be eigen vector ofA corresponding to λ_{r}.

Properties of Eigen values:

i) Sum of eigen values is equal to the sum of the main diagonal elements of A (sum of eigen values $=$ Trace of A)
ii) Product of eigen values of $A=|A|$ (determinant of A)
iii) Every square matrix and its transpose have the same eigen values.
iv) If $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are eigen values of A. Then,
a) A^{-1} has eigen values $\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \ldots \frac{1}{\lambda_{n}}$
b) $\mathrm{A} \quad \pm \mathrm{kl}$ has eigen values $\lambda_{1} \pm \mathrm{k}, \lambda_{2} \pm \mathrm{k}, \ldots \ldots . . . \lambda_{\mathrm{n}} \pm \mathrm{k}$
c) A^{2} has eigen values as $\lambda_{1}^{2}, \lambda_{2}^{2}, \ldots \lambda_{n}^{2}$
d) A^{m} has eigen values $\lambda_{1}^{m}, \lambda_{2}^{m}, \ldots . . \lambda_{n}^{m}$
e) $k A$ has eigen values as $k \lambda_{1}, k \lambda_{2}, \ldots k \lambda_{n}$
f) The eigen values of a triangular (upper or lower) matrix are the main diagonal elements.
Example:
Eigen values of $\left[\begin{array}{lll}2 & 4 & 5 \\ 0 & 7 & 8 \\ 0 & 0 & 1\end{array}\right]$ are 2, 7 and 1
Eigen values of $\left[\begin{array}{lll}3 & 0 & 0 \\ 5 & 4 & 0 \\ 6 & 5 & 7\end{array}\right]$ are 3,4 and 7
v) If λ is an eigen values of an orthogonal matrix, then $\frac{1}{\lambda}$ is also its eigen value.

Determinants and Matrices

vi) The eigen values of a real symmetric matrix are real numbers.
vii) Eigen vectors corresponding to distinct eigen values of a real symmetric matrix are orthogonal.
viii) If a real symmetric matrix of order 2 has equal eigen values then the matrix is a scalar matrix.
ix) If $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ be distinct eigen values ofa matrix A , then the corresponding eigenvectors $\quad X_{1}, X_{2}, \ldots X_{n}$ form a linearlyindependent set.
x) Similar matrices:

A square matrix B of order n is called similar to a square matrix A of order n if $\mathrm{B}=$ S^{-1} AS for some non-singular matrix S of order n. Similar matrices have the same eigen values.
xi) Corresponding to a eigen values of A , there are different eigen roots of A . Corresponding to a eigen vector of a matrix, there exists only one eigen value.

7. Cayley - Hamilton Theorem :

Every square matrix satisfies its own characteristic equation.
Let $A=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$
If A is a square matrix of order 3 , then its characteristic equation is $\lambda^{3}-S_{1} \lambda^{2}+S_{2} \lambda-$ $\mathrm{S}_{3}=0$
Where,
$\mathrm{S}_{1}=$ Sum of the main diagonal elements i.e.,
$\mathrm{S}_{1}=\mathrm{a}_{11}+\mathrm{a}_{22}+\mathrm{a}_{33}$
$\mathrm{S}_{2}=$ Sum of the minors of the main diagonal elements.
$=\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]+\left[\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_{33}\end{array}\right]+\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ $S_{3}=$ Determinant of $A=|A|$

If $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$
Then, characteristic equation is $\lambda^{2}-S_{1} \lambda+$
$\mathrm{S}_{2}=0$
Where,
$\mathrm{S}_{1}=$ Sum of the main diagonal elements
$=a_{11}+a_{12}$
$\mathrm{S}_{2}=|\mathrm{A}|$ (determinant of A$)$
Quadratic form:
A homogeneous polynomial of second degree in any number of variables is called a quadratic form.
Any quadratic form may be reduced to canonical form by means of a non-singular transformations.
Let $\mathrm{Q}=a \mathrm{x}^{2}+\mathrm{by}^{2}+\mathrm{cz}^{2}+\mathrm{hxy}+\mathrm{fyz}+$ gzxbe a quadratic form.
The corresponding matrix is
$\left[\begin{array}{lll}\text { coeff. } x^{2} & \frac{1}{2} \text { coeff. xy } & \frac{1}{2} \text { coeff. xz } \\ \frac{1}{2} \text { coeff. xy } & \text { coeff. } y^{2} & \frac{1}{2} \text { coeff. } y z \\ \frac{1}{2} \text { coeff. xz } & \frac{1}{2} \text { coeff. yz } & \text { coeff. } z^{2}\end{array}\right]$
$=\left[\begin{array}{ccc}\mathrm{a} & \frac{\mathrm{h}}{2} & \frac{\mathrm{~g}}{2} \\ \frac{\mathrm{~h}}{2} & \mathrm{~b} & \frac{\mathrm{f}}{2} \\ \frac{\mathrm{~g}}{2} & \frac{\mathrm{f}}{2} & \mathrm{c}\end{array}\right]$
Let $\mathrm{X}^{-1} \mathrm{AX}$ be the quadratic form in n variablesx $x_{1}, \mathrm{x}_{2}, \ldots \mathrm{X}_{\mathrm{n}}$
Let $\operatorname{rank} \mathrm{A}=\mathrm{r}$
The number of positive square terms is called the index of the quadratic form and is denoted by s.
\therefore The number of non-positive terms (negative terms and zero terms) $=\mathrm{r}-\mathrm{s}$ The difference between the positive square terms and the non-positive terms is called the signature of the quadratic form.
\therefore Signature $=\mathrm{s}-(\mathrm{r}-\mathrm{s})=2 \mathrm{~s}-\mathrm{r}$
Let $A=\left[a_{i j}\right]$ be the matrix of the quadratic form.
Then,

$$
\begin{aligned}
\mathrm{D}_{1} & =\left|\mathrm{a}_{11}\right|=\mathrm{a}_{11} \\
\mathrm{D}_{2} & =\left[\begin{array}{ll}
\mathrm{a}_{11} & \mathrm{a}_{12} \\
\mathrm{a}_{21} & \mathrm{a}_{22}
\end{array}\right]
\end{aligned}
$$

Nature	Eigen value method	Principal minor method	Rank method s- index r-rank n-order of the matrix
Positive definite	All are positive	$\begin{aligned} & \mathrm{D}_{1}, \mathrm{D}_{2}, \ldots \ldots \ldots . \mathrm{D}_{\mathrm{n}} \\ & \text { all are positive } \end{aligned}$	$\begin{aligned} & \mathrm{r}=\mathrm{n} \text { and } \\ & \mathrm{s}=\mathrm{n} \end{aligned}$
Negative Definite	All are negative	$\mathrm{D}_{1}, \mathrm{D}_{3}, \mathrm{D}_{5 \ldots \ldots . .}$ are negative $\mathrm{D}_{2}, \mathrm{D}_{4}, \mathrm{D}_{6} \ldots$ are positive i.e., $(-1)^{\mathrm{n}} \mathrm{D}_{\mathrm{n}}>0$	$\begin{aligned} & \mathrm{r}=\mathrm{n} \text { and } \\ & \mathrm{s}=0 \end{aligned}$
Positive semi definite	All are positive and atleast one is zero	All are positive and atleast one $\mathrm{Di}=0$	$\mathrm{r}<\mathrm{n}$ and $\mathrm{s}=\mathrm{r}$
Negative semi definite	All are negative and atleast one is zero	$\mathrm{D}_{1}, \mathrm{D}_{3}, \ldots \ldots$. are negative $\mathrm{D}_{2}, \mathrm{D}_{4} \ldots \ldots . .$. are positive atleast one is zero (or) $(-1)^{\mathrm{n}}$ $\mathrm{D}_{\mathrm{n}} \geq 0$	$\mathrm{r}<\mathrm{n}$ and $\mathrm{s}=0$
Indefinite	Both positive and negative	Both positive and negative	All other cases

Join Us on FB 千:
English - Examsdaily
Tamil - Examsdaily Tamil

Whatsapp Group
English - Click Here
Tamil - Click Here

