Determinants and Matrices

1. The rank of a matrix A is said to be r if A satisfies the following conditions.

i) There exists an r x r sub-matrix whose determinant is not zero.

ii) The determinant of every $(r+1) \times (r+1)$ submatrix is zero.

- 2. Minor of a matrix A is the determinant formed by the elements of the matrix left after striking out certain rows and columns.
- 3. Consider the system of equations.

EXAMS DAILY

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ &\vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m \\ \text{Let } A &= \begin{bmatrix} a_{11} & a_{12} \dots & a_{1n} \\ a_{21} & a_{22} \dots & a_{2n} \\ a_{m1} & a_{m2} \dots & a_{mn} \end{bmatrix} \\ \begin{bmatrix} A, B \end{bmatrix} &= \begin{bmatrix} a_{11} & a_{12} \dots & a_{1n} & b_1 \\ a_{21} & a_{22} \dots & a_{2n} & b_2 \\ a_{m1} & a_{m2} \dots & a_{mn} & b_m \end{bmatrix} \end{aligned}$$

Let the rank of A be R(A) and rank of [A, B] be R [A, B].

i) The system AX = B is consistent if and only if R(A) = R(A, B)

ii) If R(A) = R(A, B) = n (the number of unknowns), then the given system of equations is consistent and have unique solutions.

iii) If R(A) = R(A, B) < n then the given system of linear equations is consistent and have infinite number of solutions.

iv) If $R(A) \neq R(A, B)$, then the given system is not consistent (inconsistent) and have no solutions.

4. Consider the system of equations :

$$a_{11}x + a_{12}y + a_{13}z = b_1$$

 $a_{21}x + a_{22}y + a_{23}z = b_2$

$$\Delta_{x} = \begin{vmatrix} a_{31}x + a_{32}y + a_{33}z = b_{3} \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Delta_{x} = \begin{vmatrix} b_{1} & a_{12} & a_{13} \\ b_{2} & a_{22} & a_{23} \\ b_{3} & a_{32} & a_{33} \end{vmatrix}$$

$$\Delta_{y} = \begin{vmatrix} a_{11} & b_{1} & a_{13} \\ a_{21} & b_{2} & a_{23} \\ a_{31} & b_{3} & a_{33} \end{vmatrix}$$

$$\Delta_{z} = \begin{vmatrix} a_{11} & b_{1} & a_{13} \\ a_{21} & b_{2} & a_{23} \\ a_{31} & b_{3} & a_{33} \end{vmatrix}$$

i) If $\Delta \neq 0$, the system is consistent and has unique solution.

Solutions are:

$$x = \frac{\Delta_x}{\Delta}, y = \frac{\Delta_y}{\Delta}, z = \frac{\Delta_z}{\Delta}$$

ii) If $\Delta = 0$ and atleast one of the values of Δ_x , Δ_y , Δ_z is non-zero then the system has no solution.

iii) If $\Delta = 0$, $\Delta_x = \Delta_y = \Delta_z = 0$ and atleast one of the (2x2) minor of Δ is non-zero or atleast one of the element of Δ is non-zero, then the system is consistent and has infinitely many solutions.

5. Homogeneous system of linear equations : A system of homogeneous linear equations are as follows:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

:

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{2}$$
Let $A = \begin{bmatrix} a_{11} & a_{12} \dots & a_{1n} \\ a_{21} & a_{22} & a_{2n} \\ \vdots & a_{22} & a_{2n} \end{bmatrix}$

$$[A, B] = \begin{bmatrix} a_{11} & a_{12} \dots & a_{1n} & 0 \\ a_{21} & a_{22} \dots & a_{2n} & 0 \\ \vdots & a_{22} \dots & a_{2n} & 0 \\ a_{m1} & a_{m2} \dots & a_{mn} & 0 \end{bmatrix}$$

Clearly, rank of A = rank of the augmented matrix [A, B].

i) The system of homogeneous equations is always consistent and obviously $x_1 = x_{2=1} \dots x_n = 0$ is a trivial solution.

ii) If rank (A, B) = rank A = n (the number of unknowns) then the trivial solution is the unique solution.

iii) If rank (A, B) = rank A < n then the system has non-trivial solution. In this case |A| = 0

Consider the following system of homogeneous equations.

$$\begin{array}{c} a_{11}x + a_{12}y + a_{13}z = 0\\ a_{21}x + a_{22}y + a_{23}z = 0\\ a_{31}x + a_{32}y + a_{33}z = 0\\ \end{array}$$
Let
$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
Homogeneous equations
$$\begin{array}{c} \Delta = 0 \text{ consistent} \\ \text{with infinitely} \\ \text{many solutions} \\ \end{array}$$

6. Eigen values and Eigen vectors :

For n × n square matrix A the equation $|A - \lambda I| = 0$ is said to be the characteristic equation. The n roots of $|A - \lambda I| = 0$ are calledeigen values (characteristic roots, proper values(or) latent roots). Suppose $\lambda_1, \lambda_2, ..., \lambda_n$ be the eigen values of A, corresponding to each value of λ_r the equation $AX = \lambda_r X$ has a non-zero solution vector X_r . It is said to be eigen vector of A corresponding to λ_r .

Properties of Eigen values:

i) Sum of eigen values is equal to the sum of the main diagonal elements of A (sum of eigen values = Trace of A)

ii) Product of eigen values of A = |A| (determinant of A)

iii) Every square matrix and its transpose have the same eigen values.

iv) If $\lambda_1, \lambda_2, ..., \lambda_n$ are eigen values of A. Then,

a) A^{-1} has eigen values $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$ b) $A \pm kl$ has eigen values $\lambda_1 \pm k, \lambda_2 \pm k, \dots, \lambda_n \pm k$ c) A^2 has eigen values as $\lambda_1^2, \lambda_2^2, \dots, \lambda_n^2$

d) A^m has eigen values λ_1^m , λ_2^m ,, λ_n^m

e) kA has eigen values as $k\lambda_1, k\lambda_2, ..., k\lambda_n$

f) The eigen values of a triangular (upper or lower) matrix are the main diagonal elements.

Example:

Eigen values of $\begin{bmatrix} 2 & 4 & 5 \\ 0 & 7 & 8 \\ 0 & 0 & 1 \end{bmatrix}$ are 2, 7 and 1 Eigen values of $\begin{bmatrix} 3 & 0 & 0 \\ 5 & 4 & 0 \\ 6 & 5 & 7 \end{bmatrix}$ are 3, 4 and 7 v) If λ is an eigen values of an orthogonal matrix, then $\frac{1}{\lambda}$ is also its eigen value.

Download Study Materials on www.examsdaily.in

Follow us on FB for exam Updates: ExamsDaily

EXAMS DAILY

vi) The eigen values of a real symmetric matrix are real numbers.

vii) Eigen vectors corresponding to distinct eigen values of a real symmetric matrix are orthogonal.

viii) If a real symmetric matrix of order 2 has equal eigen values then the matrix is a scalar matrix.

ix) If $\lambda_1, \lambda_2, ..., \lambda_n$ be distinct eigen values of a matrix A, then the corresponding eigenvectors $X_1, X_2, ..., X_n$ form a linearlyindependent set.

x) Similar matrices:

A square matrix B of order n is called similar to a square matrix A of order n if $B = S^{-1}$ AS for some non-singular matrix S of order n. Similar matrices have the same eigen values.

xi) Corresponding to a eigen values of A, there are different eigen roots of A. Corresponding to a eigen vector of a matrix, there exists only one eigen value.

7. Cayley - Hamilton Theorem :

Every square matrix satisfies its own characteristic equation.

Let $\mathbf{A} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$

If A is a square matrix of order 3, then its characteristic equation is $\lambda^3 - S_1\lambda^2 + S_2\lambda - S_2 = 0$

$$S_3 = 0$$

Where.

 $S_1 = Sum \text{ of the main diagonal elements i.e.,}$ $S_1 = a_{11} + a_{22} + a_{33}$

 $S_2 = Sum of the minors of the main diagonal elements.$

 $= \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ S₃= Determinant of A = |A|

If A =
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Then, characteristic equation is $\lambda^2 - S_1 \lambda +$

 $S_2 = 0$ Where,

 $S_1 =$ Sum of the main diagonal elements

 $= a_{11} + a_{12}$

 $S_2 = |A|$ (determinant of A)

Quadratic form:

A homogeneous polynomial of second degree in any number of variables is called a quadratic form.

Any quadratic form may be reduced to canonical form by means of a non-singular transformations.

Let $Q = ax^2 + by^2 + cz^2 + hxy + fyz + gzxbe a quadratic form.$

The corresponding matrix is

$$\begin{bmatrix} \operatorname{coeff.} x^2 & \frac{1}{2} \operatorname{coeff.} xy & \frac{1}{2} \operatorname{coeff.} xz \\ \frac{1}{2} \operatorname{coeff.} xy & \operatorname{coeff.} y^2 & \frac{1}{2} \operatorname{coeff.} yz \\ \frac{1}{2} \operatorname{coeff.} xz & \frac{1}{2} \operatorname{coeff.} yz & \operatorname{coeff.} z^2 \end{bmatrix}$$
$$= \begin{bmatrix} a & \frac{h}{2} & \frac{g}{2} \\ \frac{h}{2} & b & \frac{f}{2} \\ \frac{g}{2} & \frac{f}{2} & c \end{bmatrix}$$

Let X^{-1} AX be the quadratic form in n variables $x_1, x_2, \dots x_n$

Let rank
$$A = r$$

The number of positive square terms is called the index of the quadratic form and is denoted by s.

: The number of non-positive terms (negative terms and zero terms) = r - s The difference between the positive square terms and the non-positive terms is called the signature of the quadratic form.

3

:.Signature = s — (r - s) = 2s - r Let A = $[a_{ij}]$ be the matrix of the quadratic form. Then,

$$D_1 = |a_{11}| = a_{11}$$
$$D_2 = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$\begin{array}{l} D_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\ & \vdots \\ D_n = |A| \end{array}$$

Nature	Eigen value	Principal minor method	Rank method
	method		s- index
			r - rank
			n - order of the
			matrix
Positive definite	All are positive	D_1, D_2, \dots, D_n	$\mathbf{r} = \mathbf{n}$ and
		all are positive	$\mathbf{s} = \mathbf{n}$
Negative	All are negative	D_1 , D_3 , D_5 are negative	$\mathbf{r} = \mathbf{n}$ and
Definite		D_2, D_4, D_6 are	s = 0
		positive i.e., $(-1)^n D_n > 0$	
Positive semi	All are positive	All are positive and atleast	r < n and $s = r$
definite	and atleast one is	one $Di = 0$	
	zero		
Negative semi	All are negative	D_1 , D_3 , are negative	$\mathbf{r} < \mathbf{n}$ and $\mathbf{s} = 0$
definite	and atleast one is	D_2 , D_4 are positive	
	zero	atleast one is zero (or) $(-1)^n$	
		$D_n \ge 0$	
Indefinite	Both positive and	Both positive and negative	All other cases
	negative		

4