

#### **PHYSICS**

Time Allowed: 3 Hours]

[ Maximum Marks : 190

## DO NOT OPEN THE SEAL GIVEN ON THE RIGHT HAND SIDE UNLESS INSTRUCTED BY THE INVIGILATOR

The Question Paper will contain 150 questions and will have 3 Sections as below:

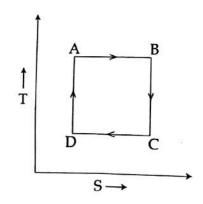
|            | estion Paper will contain 150 questions and will have 3 Se  Section | No. of Questions | Marks<br>100 |  |
|------------|---------------------------------------------------------------------|------------------|--------------|--|
| (2)        | Part A                                                              | 100              |              |  |
| (a)        | Part B                                                              | 40               | 80           |  |
| (b)<br>(c) | Part C - General Knowledge (Common Part of all Subjects)            | 10               | 10           |  |
| (c)        | Total                                                               | 150 Questions    | 190 Marks    |  |

#### INSTRUCTIONS TO THE CANDIDATES

- Read carefully and comply.
- 2. Fill the details including Name of the Candidate, Register Number, Question Paper Booklet Series in the OMR Answer Sheet. If you fail to fill the details and sign as instructed correctly, you will be personally responsible for the consequences arising during the scanning of your Answer Sheet
- 3. All the 150 questions are of MCQ (Multiple Choice Questions) type. For each Question you will find 4 possible answers marked by the letters A, B, C and D. You are to select only one correct answer and mark in OMR Answer Sheet as per the instructions given therein. In any case, choose only one answer for each question. There will be no negative marking for wrong answers.
- In the OMR Answer Sheet for each and every question shade only one answer. If more than one
  answers are shaded that question will be rejected for valuation.
- Indicate your answer by darkening the appropriate circle as per the instructions given in the OMR Answer Sheet otherwise his/her Answer Sheet is liable to be rejected. For marking answers use Blue or Black Ball Point Pen only. Ensure that you darken only one circle. Darken it completely and don't overlap with any other circle.
- 6. Don't mark anything (including marking like ✓, ⊙, □) in the question paper booklet other than space provided for this purpose. If you fail to follow this, you will be disqualified.
- 7. In any event of any mistake in any Questions, candidates will not be penalized. However, no corrections will be made in Questions during the Examination.
- Use of Mobile Phone, Pager, Digital Diary or any other Electronic Instrument etc., is not allowed. Their use will result in disqualification.
- 9. No candidate should leave the Examination Hall before the final bell. The OMR Answer Sheet should be handed over to the invigilator before leaving the Examination Hall. The candidate is allowed to take the Question Booklet and Carbon copy of the OMR Answer Sheet with Him/Her after the examination.



- 1. The PES spectrum is a plot of the :
  - (A) intensity of the electron beam versus the glancing angle
  - (B) intensity of the electron beam versus the wavenumber
  - (C) number of electrons emitted versus the kinetic energy
  - (D) ionization energy versus the wavenumber
- 2. In FT IR spectrometer:
  - (A) frequency domain plot is converted into time domain plot
  - (B) time domain plot is converted into frequency domain plot
  - (C) complex frequency plot is converted into line frequency plot
  - (D) weak signal is strengthened
- 3. In Raman spectroscopy, the frequency difference between the modified and parent line represents the :
  - (A) Polarizability of the substance
  - (B) Frequency of the absorption band of the material
  - (C) Scattering constant of the solvent
  - (D) Strength of the applied field
- 4. The depolarization ratio ( $\rho$ ) for completely unpolarized light and completely plane polarized light, respectively, are :
  - (A)  $\rho = 1$  and  $\rho = 0$


(B)  $\rho = 0$  and  $\rho = infinity$ 

(C)  $\rho < 0$  and  $\rho > 1$ 

- (D)  $\rho = 0$  and  $\rho = 1$
- 5. Choose the INCORRECT statement.
  - (A) <sup>13</sup>C nuclei always have resonance at a frequency lower than proton
  - (B) Gyromagnetic ratio of <sup>13</sup>C nucleus is smaller than that of hydrogen
  - (C) The resonances of proton (<sup>1</sup>H) are more difficult to observe than those of <sup>13</sup>C
  - (D)  $^{13}$ C nuclei, with nuclear spin  $I = \frac{1}{2}$  are important in determining the structure of organic molecules.



In the below T - S diagram, the vertical line BC represents : 6.



- (A) Isothermal process
- (B) Adiabatic process
- (C) Isochoric process
- Isobaric process (D)
- 7. The state of a gas described in terms of the properties of its constituent particles is called its:
  - (A) macroscopic state
- (B) microscopic state

(C) phase space

- (D) μ - space
- The probability that two particles obeying B E statistics can be found in same state is: 8.
  - (A) Zero
- (B) 1/2
- (C) 1
- (D) 1/4
- If three molecules a, b, c are to be distributed between two halves of a box, if none can be 9. outside the box, then the accessible microstates are:
  - (A) (a, b) and (ab, c)

(B) (b, c) and (a, bc)

(C) (a, b) and (a, c)

- (D) (ab, c) and (ac, b)
- Second order phase transitions involve abrupt changes in :
  - (A) entropy
- (B) volume
- (C) heat capacity
- (D) pressure
- In a transistor as a current source circuit \_\_\_\_\_\_ is the key to rock solid values of
  - (A) The use of base resistor
- The use of emitter resistor (B)
- (C) The direct grounding of emitter
- (D) The use of collector resistor
- 12. is a measure of the Early effect in common emitter mode transistor amplifiers. (A) h<sub>ie</sub> the input impedence
  - h<sub>re</sub> reverse voltage gain
  - (C) h<sub>fe</sub> forward current gain
- (D) h<sub>oe</sub> output admittance



| 13. | In the                                                                                                                                                                   | e Non - inverti<br>back ratio is B,            | ng voltag<br>then the | ge feedback<br>desensitivit | mod<br>y and      | e, if the        | ne open - loop<br>d loop voltage | voltage<br>gain res | gain is A a<br>pectively ar | nd the   |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------|-----------------------------|-------------------|------------------|----------------------------------|---------------------|-----------------------------|----------|--|--|--|
|     | (A)                                                                                                                                                                      | 1 + AB ; A/(1                                  | + AB)                 |                             | (B)               | 1 – A            | B : A/(1+AB)                     | )                   |                             |          |  |  |  |
|     | (C)                                                                                                                                                                      |                                                | – AB)                 |                             | (D)               | 1 – A            | B ; A/(1-AB)                     | )                   |                             |          |  |  |  |
|     |                                                                                                                                                                          |                                                |                       |                             |                   |                  |                                  | atod ave            | n after fabi                | rication |  |  |  |
| 14. | by c                                                                                                                                                                     | values of resist<br>utting a part of           | ance of _             | tor with a l                | resisto<br>aser l | ors car<br>beam. | t be easily adju                 | isled eve           |                             |          |  |  |  |
|     | (A)                                                                                                                                                                      | Diffused                                       | (B)                   |                             | uoer -            | (C)              | Thin film                        | (D)                 | Pinched                     |          |  |  |  |
| 15. | In a                                                                                                                                                                     | A/D converte                                   | r the mor             | notonicity to               | vne o             | f outo           | ut response me                   | eans, a c           | onverter :                  |          |  |  |  |
|     | (A)                                                                                                                                                                      | Whose output                                   | t is prog             | ressively his               | gher f            | or pro           | gressively high                  | ner input           | :                           |          |  |  |  |
|     | <ul><li>(A) Whose output is progressively higher for progressively higher input</li><li>(B) Whose output is progressively lower for progressively higher input</li></ul> |                                                |                       |                             |                   |                  |                                  |                     |                             |          |  |  |  |
|     | (C) Whose output is progressively higher for progressively lower input                                                                                                   |                                                |                       |                             |                   |                  |                                  |                     |                             |          |  |  |  |
|     | (D)                                                                                                                                                                      | Whose outpu                                    | it does n             | ot depend o                 | n inp             | ut vol           | tage                             |                     |                             |          |  |  |  |
| 16. | The<br>ψ(x,                                                                                                                                                              | e probability<br>$t = e^{i(kx - \omega t)}$ is | current<br>given by   | density f                   | or a              | parti            | cle described                    | l by th             | e wave fu                   | ınction  |  |  |  |
|     | (A)                                                                                                                                                                      | 2ħΚ                                            | (B)                   | ħΚ                          |                   | (C)              | $\frac{\hbar K}{2m}$             | (D)                 | $\frac{\hbar K}{m}$         |          |  |  |  |
| 17. | (a)                                                                                                                                                                      | The eigenva                                    | lues of a             | self - adjoin               | ıt ope            | rator a          | are real.                        |                     |                             |          |  |  |  |
|     | (b)                                                                                                                                                                      | Any two eig operator are                       |                       |                             |                   | distinc          | t (un equal ) ei                 | genvalue            | es of a self -              | adjoin   |  |  |  |
|     | (c)                                                                                                                                                                      | An operator                                    | A is said             | l to be self -              | adjoi             | nt of i          | ts adjoint is eq                 | ual to its          | $elf (A^+ = A$              | ).       |  |  |  |
|     | The                                                                                                                                                                      | e true statemen                                | its are :             |                             |                   |                  |                                  |                     |                             |          |  |  |  |
|     | (A)                                                                                                                                                                      | (a) and (b) o                                  | only                  |                             | (B)               | (b)              | and (c) only                     |                     |                             |          |  |  |  |
|     | (C)                                                                                                                                                                      | (a) and (c) o                                  | only                  |                             | (D)               | (a),             | (b) and (c)                      |                     |                             |          |  |  |  |
| 18. | . (a)                                                                                                                                                                    | $[J_x,J_y]=i\hbar$                             | $J_z$                 |                             |                   |                  |                                  |                     |                             |          |  |  |  |
|     | (b)                                                                                                                                                                      | $[J_+,J]=2\hbar$                               | $J_z$                 |                             |                   |                  |                                  |                     |                             |          |  |  |  |
|     | (c)                                                                                                                                                                      | $\langle J_z^2 \rangle = m^2$                  | $\hbar^2$             |                             |                   |                  |                                  |                     |                             |          |  |  |  |
|     | (d)                                                                                                                                                                      | $J_+^+ = J_+$                                  |                       |                             |                   |                  |                                  |                     |                             |          |  |  |  |

The correct statements are:
(A) (a), (b) and (c) only

(C) (b), (c) and (d) only

(B)

(a), (c) and (d) only

(D) (a), (b), (c) and (d)



| 19  | . The      | e selection rules fo                                                | or the            |                              |                  | dipole approxima                                           | ition a | re:                            |
|-----|------------|---------------------------------------------------------------------|-------------------|------------------------------|------------------|------------------------------------------------------------|---------|--------------------------------|
|     | (A)<br>(C) | $\Delta l = \pm 1$ ; $\Delta m = \Delta l = 0$ ; $\Delta m = \pm 1$ | =0<br>=1,0        | (B<br>(D                     | ) Δl =<br>) Δl = | =0; $\Delta m = \pm 1$<br>= $\pm 1$ ; $\Delta m = \pm 1$ , | 0       |                                |
| 20  |            |                                                                     |                   | ım that may ari              | se whe           | $n_{1} = 1$ and $j_{2} = 1$                                | 1 are a | dded is :<br>2, 3/2, 1, 1/2, 0 |
|     | (A)        | 1, 0, 1                                                             | (D)               | 2, 1, 0                      | (0)              | _, _, _, _,                                                | , ,     |                                |
| 21. | . If a     | plane is parallel                                                   | to a Co           | o-ordinate axis t            | he cor           | responding miller                                          | index   | is:                            |
|     | (A)        |                                                                     | (B)               |                              | (C)              |                                                            | (D)     | _                              |
| 22. | A c        | abic BaTiO <sub>3</sub> ferro                                       | electri           | c becomes tetra              | gonal v          | when:                                                      |         |                                |
|     |            | $T = T_c$                                                           |                   |                              |                  |                                                            | (D)     | $T < T_c$                      |
| 22  | 0          |                                                                     |                   | war artise of the            | rocine           | ocal lattice is wro                                        | nø:     |                                |
| 23. | (A)        | CARLO CONTRACTOR                                                    |                   |                              |                  | ocal lattice is wro<br>direct lattice                      |         |                                |
|     | (B)        |                                                                     |                   |                              |                  |                                                            | sely p  | roportional to the             |
|     | (2)        | volume of a un                                                      | it cell c         | of direct lattice            |                  |                                                            |         |                                |
|     | (C)        |                                                                     |                   |                              |                  | he lattice plane of                                        |         |                                |
|     | (D)        | The volume of to of a unit cell of                                  | he unit<br>direct | cell of the recip<br>lattice | rocal la         | ttice is directly pr                                       | oporti  | onal to the volume             |
|     |            | ** *** OG**                                                         |                   |                              |                  |                                                            |         |                                |
| 24. | In m       | etallic sodium ha                                                   | ving E            | BCC structure. T             | he line          | es present in the o                                        | liffrac | tion pattern are :             |
|     | (A)        | (100), (300)                                                        | (B)               | (111), (221)                 | (C)              | (200), (110)                                               | (D)     | (001), (003)                   |
| 25. | The        | Depolarization fa                                                   | ctor fo           | r a sphere along             | g any a          | ixis is :                                                  | 3       |                                |
|     |            | 1/2                                                                 |                   | 1                            | 14/14/2017       | 0                                                          | (D)     | 1/3                            |
| 26. | The c      | combined form of                                                    | first a           | nd second Law                | of The           | rmodynamics is                                             | given   | by:                            |
|     | (A)        |                                                                     |                   |                              |                  | dQ = T ds + P dv                                           | 6.5     | 1973                           |
| 27. | Whic       | h is correct ?                                                      |                   |                              |                  |                                                            |         |                                |
|     | Accor      | ding to Bose - Ei                                                   | nstein            | statistics,                  |                  |                                                            |         |                                |
|     | (A)        | Particles are ider                                                  | ntical a          | nd distinguisha              | ble              |                                                            |         |                                |
|     | (B)        | Particles are with                                                  | out ar            | ny spin                      |                  |                                                            |         |                                |
|     | (C)        | Particles are calle                                                 | ed ferm           | nions                        |                  | V                                                          |         |                                |
|     | (D)        | Particles are calle                                                 | d Boso            | ons                          |                  |                                                            |         |                                |
|     |            |                                                                     |                   |                              |                  |                                                            |         |                                |



| 28. | Ferm  | i - Dirac statistic                  |                                                                                                                            |              |              | 99)              |        |                       |  |  |  |  |  |  |
|-----|-------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|--------------|------------------|--------|-----------------------|--|--|--|--|--|--|
|     | (A)   | Common gas at                        | normal t                                                                                                                   | emperatu     | res          |                  |        |                       |  |  |  |  |  |  |
|     | (B)   | Photon gas                           |                                                                                                                            |              |              |                  |        |                       |  |  |  |  |  |  |
|     | (C)   | Phonon gas                           |                                                                                                                            |              |              |                  |        |                       |  |  |  |  |  |  |
|     | (D)   | electron gas in r                    | netals                                                                                                                     |              |              |                  |        | -                     |  |  |  |  |  |  |
| 29. | Whi   | ch is wrong?                         |                                                                                                                            |              |              |                  |        |                       |  |  |  |  |  |  |
|     | (A)   | An ensemble is                       | a collectio                                                                                                                | n of a nu    | mber of pa   | rticles.         | - 20   |                       |  |  |  |  |  |  |
|     | (B)   | An ensemble is a                     | collection                                                                                                                 | of a large   | number of    | macroscopically  | ident  | ical, but essentially |  |  |  |  |  |  |
|     |       | independent su                       | etame                                                                                                                      |              |              |                  |        |                       |  |  |  |  |  |  |
|     | (C)   | Macroscopically                      | Macroscopically means each of the systems constituting an ensemble satisfies the same or different macroscopic conditions. |              |              |                  |        |                       |  |  |  |  |  |  |
|     | (D)   | Example for ma                       |                                                                                                                            |              |              | mber of particle | es.    |                       |  |  |  |  |  |  |
|     | 5 B   |                                      |                                                                                                                            |              |              |                  |        |                       |  |  |  |  |  |  |
| 30. | Acc   | ording to Debye                      | s theory                                                                                                                   | of speci     | fic heat at  | low temperati    | are th | e specific heat is    |  |  |  |  |  |  |
|     | prop  | ording to Debye<br>portional to<br>T |                                                                                                                            |              | (C)          | Γ3               | (D)    | independent of T      |  |  |  |  |  |  |
|     | (A)   | 1                                    | (B) 12                                                                                                                     |              | (C) 1        |                  | (D)    | macpenaem of 1        |  |  |  |  |  |  |
| 31. | Mat   | ch the following                     | :                                                                                                                          |              |              |                  |        |                       |  |  |  |  |  |  |
|     | 21202 |                                      |                                                                                                                            |              | N (          |                  |        |                       |  |  |  |  |  |  |
|     | (a)   | Zener diode                          |                                                                                                                            | (i)          | $\dashv$     |                  |        |                       |  |  |  |  |  |  |
|     | ()    |                                      |                                                                                                                            |              |              |                  |        |                       |  |  |  |  |  |  |
|     |       |                                      |                                                                                                                            |              |              | 1                |        |                       |  |  |  |  |  |  |
|     | (b)   | Tunnel diode                         |                                                                                                                            | (ii)         |              | \                |        |                       |  |  |  |  |  |  |
|     |       |                                      |                                                                                                                            |              |              |                  |        |                       |  |  |  |  |  |  |
|     | (c)   | Varactor diode                       |                                                                                                                            | (iii)        | -N           |                  |        |                       |  |  |  |  |  |  |
|     | (0)   | variation diode                      |                                                                                                                            | (111)        |              |                  |        |                       |  |  |  |  |  |  |
|     |       |                                      |                                                                                                                            |              |              |                  |        |                       |  |  |  |  |  |  |
|     | (d)   | Schottky diode                       |                                                                                                                            | (iv)         | $\dashv$     |                  |        |                       |  |  |  |  |  |  |
|     | Cod   | es :                                 |                                                                                                                            |              | ~ _          |                  |        |                       |  |  |  |  |  |  |
|     |       | (a) (b) (c)                          | (d)                                                                                                                        |              |              |                  |        |                       |  |  |  |  |  |  |
|     | (A)   | (iii) (iv) (ii)                      | (i)                                                                                                                        |              |              |                  |        |                       |  |  |  |  |  |  |
|     | (B)   | (iv) (iii) (ii)                      | (i)                                                                                                                        |              | *            |                  |        |                       |  |  |  |  |  |  |
|     | (C)   | (iii) (iv) (i)                       | (ii)                                                                                                                       |              |              |                  |        |                       |  |  |  |  |  |  |
|     | (D)   | (iv) (iii) (i)                       | (ii)                                                                                                                       |              |              |                  |        |                       |  |  |  |  |  |  |
| 32. | Δ +-  | ancietor has a terr                  | vical of C                                                                                                                 | 100 ** -     |              |                  |        |                       |  |  |  |  |  |  |
| J   | curr  | ent is:                              | ical of B                                                                                                                  | - 100. If th | ne collector | current is 40 m  | A. Th  | e value of emitter    |  |  |  |  |  |  |
|     | (A)   | 0.4 mA                               |                                                                                                                            | 4 mA         |              | 0 mA             | (D)    | 4.04 mA               |  |  |  |  |  |  |
|     |       |                                      |                                                                                                                            |              |              |                  | ' /    |                       |  |  |  |  |  |  |



| 33.  | Whi   | ich of the following statements are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | corre   | ect?                                            |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------|
|      | (a)   | D - MOSFET can be operated in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | both    | depletion mode and enhancement mode             |
|      | (b)   | E - MOSFET can be operated on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ly in   | enhancement mode                                |
|      | (c)   | E - MOSFET can be operated on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ly in c | depletion mode                                  |
|      | (A)   | All are correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •       | •                                               |
|      | (B)   | (b), (c) are correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                 |
|      | (C)   | (a), (b) are correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                 |
|      | (D)   | (a), (c) are correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                 |
| 34.  | Push  | n pull amplifier is a combination o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f :     |                                                 |
|      | (A)   | two class A amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (B)     | two class AB amplifier                          |
|      | (C)   | two class C amplifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (D)     | two class B amplifier                           |
| 35.  | In n  | nonolithic IC technology, the capa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | citance | e that are fabricated have values :             |
|      | (A)   | less than 200 nF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (B)     | Greater than 200 µF                             |
|      | (C)   | Greater than 200 PF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (D)     | less than 200 PF                                |
| 36.  | The   | $K_{\alpha}$ line of X-rays produced due to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the e   | electron transition from                        |
|      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | (C) $n=3$ to $n=2$ (D) $n=4$ to $n=1$           |
| 37.  | In u  | ltraviolet photoelectron spectrome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ter, th | ne primary and secondary beams are made up      |
|      | (A)   | electrons, UV photons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (B)     | electrons, electrons                            |
|      | (C)   | UV photons, electrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (D)     | UV photons, UV photons                          |
| 38.  | The   | re is no IR absorption for nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | molec   | ules hecause :                                  |
|      | (A)   | Its polarizability is zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | It has no vibrational level                     |
|      | (C)   | Its dipolemoment is zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (D)     | It has no rotational level                      |
| 39.  | Whi   | ch of the following region of infra<br>nic compounds ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | red is  | s extremely useful for spectroscopic studies of |
|      | (A)   | Near infrared (B) Middle inf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rared   | (C) Far infrared (D) Cannot predict             |
| 40.  | As th | ne temperature is increased, the int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ensity  | of an auti                                      |
|      | (A)   | Increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | criorty | of an anti - stokes Raman lines :               |
|      | (B)   | Decreases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                                                 |
|      | (Ç)   | remains unchanged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                                 |
|      | (D)   | Increases and decreases depending                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | g on t  | he mode of vibrations                           |
| 17 D |       | The state of the |         |                                                 |
|      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                                 |



In a region the electric potential is given by: 41.

$$V = 2x^2y + 3y^2z + 4z^2x$$

then the expression for electric field  $\overrightarrow{E}$  is:

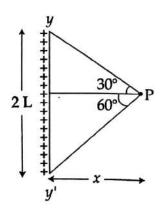
(A) 
$$+(4xy+4z^2)\vec{i}+(2x^2+6yz)\vec{j}+(3y^2+8zx)\vec{k}$$

(B) 
$$+(2x^2y+4z^2x)\overrightarrow{i}+(2x^2y+3y^2z)\overrightarrow{j}+(3y^2z+4z^2x)\overrightarrow{k}$$

(C) 
$$-(4xy+4z^2)\vec{i} - (2x^2+6yz)\vec{j} - (3y^2+8zx)\vec{k}$$

(D) 
$$-\left(\frac{2}{3}x^3y + 2z^2x\right)^{\overrightarrow{i}} - \left(x^2y^2 + y^3z\right)^{\overrightarrow{j}} - \left(\frac{3}{2}y^2z^2 + \frac{4}{3}z^3x\right)^{\overrightarrow{k}}$$

The vector potential  $\overrightarrow{A}$  corresponds to a constant magnetic field in the z direction can be 42. represented by:


(A) 
$$-B\bar{k}$$

(B) 
$$\frac{B}{2} \left( \overrightarrow{i} x - \overrightarrow{j} y \right)$$

(C) 
$$\frac{B}{2} \left( \overrightarrow{j} x - \overrightarrow{i} y \right)$$

(B) 
$$\frac{B}{2} \left( \overrightarrow{i} x - \overrightarrow{j} y \right)$$
 (C)  $\frac{B}{2} \left( \overrightarrow{j} x - \overrightarrow{i} y \right)$  (D)  $B \left( \overrightarrow{i} x - \overrightarrow{j} y \right)$ 

A straight line segment of length 2L having line charge density  $\lambda$  is lying along yy' axis as 43. shown below. The electric field intensity at a point 'P' which is at a distance 'x' from the line segment and along yy' is:



(B) 
$$\frac{\lambda}{4\pi\epsilon_0 x} \left[ \frac{1+\sqrt{3}}{2} \right]$$
 (C)  $\frac{\lambda}{4\pi\epsilon_0 x} \left[ 1-\sqrt{3} \right]$  (D)  $\frac{\lambda}{8\pi\epsilon_0 x} \left[ \sqrt{3}-1 \right]$ 

$$\frac{\lambda}{4\pi\epsilon_0x}\left[1-\sqrt{3}\right]$$

$$\frac{\lambda}{8\pi\epsilon_0 x} \left[\sqrt{3}-1\right]$$



| 44.         | Supp<br>indu | oose a magnetic<br>ctance L. What c     | mono;<br>urrent   | pole<br>is in | q <sub>m</sub> pas<br>duced | sses th         | nroug<br>e loop   | h a resistance<br>?                | less loop  | of wire with se                    | elf |
|-------------|--------------|-----------------------------------------|-------------------|---------------|-----------------------------|-----------------|-------------------|------------------------------------|------------|------------------------------------|-----|
|             | (A)          | $I = \frac{\mu_0 q_m}{L}$               | (B)               | I=-           | <u>μοqm</u><br>2L           |                 | (C)               | $I = \frac{2\mu_0  q_m}{\sqrt{L}}$ | (D)        | $I = \frac{\sqrt{L}}{2\mu_0 q_m}$  |     |
| <b>4</b> 5. | Betw<br>V ex | veen the two end<br>ist. If the current | s of a<br>is I, V | cylin<br>Vhat | drical                      | wire o<br>magni | of radi<br>tude ( | us 'a' and leng<br>of pointing vec | th L, a p  | potential differen<br>e cylinder ? | ce  |
|             | (A)          | Zero                                    | (B)               | VI            | 8                           | *               | (C)               | $\frac{VI}{\pi a^2}$               | (D)        | $\frac{VI}{2\pi aL}$               |     |
| 46.         |              | measurement of<br>ction mode is use     |                   | d rad         | iation                      | envir           | onmei             | nt, which one                      | of the fo  | ollowing radiation                 | on  |
|             | (A)          | Pulse mode                              |                   |               |                             | (B)             | Curi              | ent mode                           |            |                                    |     |
|             |              | Frequency mod                           | le                |               |                             | 30 1 6          |                   | n square voltag                    | ge mode    |                                    |     |
|             | (-)          |                                         |                   |               |                             | (-)             | 7.00              |                                    | ,          |                                    |     |
| 47.         | Corr         | relation coefficien                     | ıt is in          | depe          | ndent                       | of cha          | nge o             | f :                                |            |                                    |     |
|             |              | Origin only                             |                   | _             |                             |                 | 15                | only                               |            |                                    |     |
|             |              | Both origin and                         | l scale           |               |                             | 100             |                   |                                    |            |                                    |     |
|             | (0)          | Dour origin and                         |                   |               |                             | (-)             |                   |                                    |            |                                    |     |
| 48.         |              | ch one of the follo                     |                   |               |                             | condit          | ion fo            | r validity of chi                  | i-square   | test of goodness                   | of  |
|             |              | The sample obs                          |                   |               |                             | e dep           | enden             | t                                  |            |                                    |     |
|             | 120          | Constrains on t                         |                   |               |                             |                 |                   |                                    |            |                                    |     |
|             |              | Total number o                          |                   |               |                             |                 |                   |                                    |            |                                    |     |
|             | (D)          | No theoretical o                        |                   |               |                             |                 |                   |                                    |            |                                    |     |
|             | ` '          |                                         |                   | -             |                             |                 |                   |                                    |            |                                    |     |
| 49.         |              | capacitors of 0                         | .0003             | μF aı         | nd 0.00                     | 006 µ]          | Fare              | connected in s                     | series, tl | nen the combine                    | ed  |
|             | 10000        | 0.0002 μF                               | (B)               | 0.00          | 009 μF                      |                 | (C)               | 0.0006 µF                          | (D)        | 0.0005 μF                          |     |
|             | ()           | **************************************  | 47 MW             |               |                             |                 | #U 1859           | 5)                                 |            | 50                                 |     |
| 50.         | Low          | resistance can b                        | e meas            | sured         | accur                       | ately ł         | ру:               |                                    |            |                                    |     |
|             | (A)          | Kelvin double b                         |                   |               |                             | (B)             |                   | in single bridge                   | •          |                                    |     |
|             | (C)          | Wheatstone brid                         |                   | •             |                             | (D)             | Meg               | ohm bridge                         |            |                                    |     |
|             | , ,          |                                         | (Feb)             |               |                             |                 |                   |                                    |            |                                    |     |

51.  ${}^{11}_{6}$ C and  ${}^{11}_{5}$ B are examples of :

(A) Isotopes (B) Isobars (C) Isotones (D) Mirror nuclei



- 52. Which of the following nucleus is most stable?
  - (A) Nucleus having odd neutrons and odd protons
  - Nucleus having odd neutrons and even protons
  - (C) Nucleus having even neutrons and even protons
  - (D) Nucleus having even neutrons and odd protons
- From meson theory of exchange forces, the potential energy of interaction between two 53. nucleons is proportional to:

- (A)  $\frac{e^{-\mu r}}{r^2}$  (B)  $\frac{e^{-\mu r}}{r}$  (C)  $\frac{e^{-\mu r^2}}{r^2}$  (D)  $\frac{e^{-\mu r^2}}{r}$
- 54. Liquid drop model predict :
  - depth of net nuclear potential asymmetry term
  - magnetic numbers, nuclear spins, nuclear particles pairing term
  - (C) electric quadrupole moment
  - (D) accurate average masses and binding energy through semi empirical mass formula
- In nuclear reaction  ${}_{6}^{12}C(d.x){}_{7}^{13}N$ , the particle x is:
  - (A) α particle
    - (B) Proton
- (C) Neutron
- (D) Gamma photon

- Which of the following reactions can occur? 56.
  - (a)  $\wedge^{\circ} \rightarrow \pi^{+} + \pi^{-}$
  - (b)  $\pi^- + p \rightarrow \pi^\circ + \pi$
  - (c)  $\pi^+ + p \rightarrow \pi^+ + p + \pi^- + \pi^\circ$
  - (d)  $v+n \rightarrow \pi^- + p$
  - (A) (a), (b) and (c)

(B) (b) and (d)

(C) (b), (c) and (d)

- (D) (a), (b) and (d)
- The value of Compton wavelength is:
  - (A)  $2.426 \times 10^{-12}$  m

(B)  $0.53 \times 10^{-10}$  m

(C)  $1.03 \times 10^{-12}$  m

- (D)  $0.53 \times 10^{-12}$  m
- 58. A hyper nuclei is the one:
  - (A) Which has hyper charge value Y=1
  - Which decays through only mesonic decay (B)
  - (C) Which is a meta stable nucleus with bound hyperon replaces one of the nucleons
  - (D) Whose nucleon nucleon force is spin independent



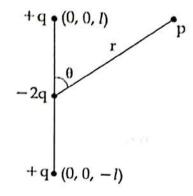
- The binding energy per nucleon of C12 is 7.68 MeV and of C13 is 7.48 MeV. The energy 59. required to remove the extra neutron from C13 is very nearly equal to:
  - (A) 5.08 MeV
- 0.2 MeV (B)
- (C) 3.7 MeV
- (D) 3.9 MeV
- Two radioactive materials  $X_1$  and  $X_2$  have decay constants 10  $\lambda$  and  $\lambda$  respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of  $X_1$  to that of  $X_2$

will be  $\frac{1}{6}$  after a time:

- (A)  $\frac{1}{10 \, \lambda}$  (B)  $\frac{1}{9 \, \lambda}$  (C)  $\frac{1}{11 \, \lambda}$  (D)  $\frac{11}{10 \, \lambda}$

- In n-type semiconductor, the concentration of electrons is  $2 \times 10^{22} \text{m}^{-3}$  and its electrical 61. conductivity is 112  $\Omega^{-1}$ m<sup>-1</sup>. The mobility of electrons, in SI units, will be :
  - (A) 0.252
- (B) 0.035
- (C) 0.140
- (D) 0.435
- 62. According to molecular field theory, above Curie point, the:
  - (A) material becomes ferromagnetic
  - (B) spontaneous magnetisation vanishes
  - (C) substance do not obey Curie - Weiss law
  - (D) spontaneous magnetisation occur
- Calculate the polarization produced in a dielectric medium of dielectric constant 6, when 63. subjected to an electric field of  $100 \text{ V}^{-1}\text{m}^{-1}$ .

(given : permittivity of free space =  $8.85 \times 10^{-12} \text{Fm}^{-1}$  :


- (A)  $5.31 \times 10^{-9} \text{ C.m}^{-2}$
- (B)  $1.48 \times 10^{-14} \text{ C.m}^{-2}$
- (C)  $4.43 \times 10^{-9} \text{ C.m}^{-2}$
- (D)  $4.39 \times 10^{-40}$  C.m<sup>-2</sup>
- Statement (I): All ferroelectrics are pyroelectric and piezoelectric. 64.

Statement (II): All pyroelectrics are piezoelectric, but the converse is not true.

- (A) Both statements are correct
- (B) Both statements are wrong
- Statement (I) is correct and statement (II) is wrong (C)
- Statement (I) is wrong and statement (II) is correct
- In a semiconductor, the product of the electron and hole concentration at a given temperature 65. is:
  - (A) always equal to unity
  - a constant and independent of impurity concentration (B)
  - (C) always equal to zero
  - (D) directly proportional to Fermi energy



- Electric field intensity, inside a uniformly charged sphere of radius R and charge density 66.  $\rho$ , at a point r (r < R ) from the centre of the sphere is :
  - (A) Zero
- (B)  $\frac{\rho r}{3\epsilon_0}$  (C)  $\frac{\rho}{4\pi\epsilon_0 r^2}$  (D)  $\frac{\rho}{3\epsilon_0 r^3}$
- 67. Sea water at frequency  $\nu = 4 \times 10^8$  Hz has permittivity  $\epsilon = 81\epsilon_0$ , permeability  $\mu = \mu_0$ , and resistivity  $\rho = 0.23$   $\Omega$ m. What is the ratio of conduction current to displacement current?
- (B) Zero
- (C) 2.41
- (D) 1.00
- 68. Three charges are arranged in a linear array. The charge -2q is placed at the origin and two charges each of +q are placed at (0, 0, l) and (0, 0, -l) as shown below. The potential and electric field at 'p' are respectively proportional to:



- (A)  $\frac{1}{r}$  and  $\frac{1}{r^2}$  (B)  $\frac{1}{r^2}$  and  $\frac{1}{r^3}$  (C)  $\frac{1}{r^3}$  and  $\frac{1}{r^4}$  (D)  $\frac{1}{r^4}$  and  $\frac{1}{r^5}$
- A metallic sphere A of radius a' carries a charge Q. It is brought in contact with an uncharged 69. sphere B of radius 'b'. The charge on sphere A now will be:
- (B)  $\frac{aQ}{a+b}$  (C)  $\frac{aQ}{b}$
- A circular loop has its radius increasing at a rate of 3 m/s. The loop is placed perpendicular 70. to a constant magnetic field of strength 0.5 wb/m². When the radius of the loop is 6m, the
  - (A)  $4.5\pi$  volts
- (B) 0.9π volts
- (C) 18π volts
- (D)  $0.45\pi$  volts
- The symmetric property of a tensor is \_\_\_\_\_ used. 71.
  - dependent of coordinate system used (A)
  - independent of coordinate system used (B)
  - dependent on transformation law (C)
  - independent of transformation law (D)



- The velocity of a particle is: 72.
  - (A) a scalar

- a contravariant vector (B)
- (C) a covariant vector
- a tensor of rank 2 (D)
- If all the elements of a group may be expressed by the power of a single element, the group is called:
  - (A) Cyclic group

- Sub-group (B)
- (C) Non-Abelian group
- Power group (D)
- The value of  $\frac{J_{\frac{1}{2}}(x)}{J_{-\frac{1}{2}}(x)}$  is:
  - (A) 1
- (B) tan x
- (C) cot x
- tanhx (D)

- The value of  $H_2(x)$  is: 75.
  - (A)  $x^2 1$
- (B)  $2x^2-1$  (C)  $4x^2-2$
- (D)  $\frac{3x^2-1}{2}$

- The value of m = ?
  - (A) sinm sin(1-m)

(B)

- The value of  $\frac{1}{4} \frac{3}{4} = ?$ 
  - (A) 1
- (B)  $\pi\sqrt{2}$
- (C)  $\sqrt{2\pi}$
- (D)  $2\sqrt{\pi}$

- Three Cube roots of unity form:
  - an abelian group under addition
  - an abelian group under multiplication
  - (C) non abelian group under multiplication
  - non abelian group under addition



79. Moment of Inertia is a:

> (A) Scalar

Vector (B)

(C) a tensor of rank 2

a tensor of higher rank (D)

The value of  $\beta$  (3, 2) is: 80.

- (A)  $\frac{1}{12}$
- (B)  $\frac{1}{6}$
- (C)  $\frac{1}{3}$
- (D)  $\frac{1}{2}$

81. The generalised force need not always have the dimensions of \_

- (A) Energy
- (B) Work
- (C) Momentum
- (D) **Force**

82. Which is wrong?

- The distance between any two points of a rigid body remains fixed.
- The relative velocity of any point at the position of ith particle is expressed in terms of angular velocity ω as,

$$v_i = \omega \times \overrightarrow{r_i}$$

- The position vector of any point relative to origin of the body set of axes is constant in (C) magnitude.
- The position vector changes in direction only when the body is in motion (rotation).

Which is correct? 83.

- The expression for one dimensional Linear Harmonic Oscillator is  $m\ddot{x}+kx^2=0$ (A)
- The expression for one dimensional Linear Harmonic Oscillator is  $m\dot{x}+kx=0$ (B)
- The expression for one dimensional Linear Harmonic Oscillator is  $\ddot{\theta} + \frac{g}{l}\theta = 0$ (C)
- The expression for one dimensional Linear Harmonic Oscillator is  $m\ddot{x}+kx=0$ (D)

Which is wrong? 84.

For an isotropic oscillator, the equation of motion in polar Co-ordinates is:

(A) 
$$m\ddot{r}-mr\dot{\theta}^2-mr\sin^2\theta\dot{\phi}^2+kr=0$$

$$m\ddot{r} - mr\dot{\theta}^2 - mr\sin^2\theta\dot{\phi}^2 + kr = 0 \qquad (B) \qquad \frac{d}{dt}(mr^2\dot{\theta}) - mr^2\sin\theta\cos\theta\dot{\phi}^2 = 0$$

(C) 
$$\frac{d}{dt} (mr^2 \sin \theta \dot{\phi}) = 0$$

(D) 
$$m\ddot{r} - mr\dot{\theta}^2 + mr \sin^2\theta \dot{\phi} + kr = 0$$



- 85. Which is wrong?
  - (A) Hamiltonian  $H = H(q_i, p_i)$
- (B) Hamiltonian H=T-V
- (C) Hamiltonian H=T+V
- (D) Hamiltonian  $H = \sum_{j} p_j \dot{q}_j L(q_j, \dot{q}_j)$
- 86. The number of comparators needed in parallel conversion type 8 bit A/D converter is :
  - (A) 8
- (B) · 16
- (C) 255
- (D) 256

87. Find the odd one out:

Low temperature can be achieved by

- (A) the process of adiabatic demagnetization
- (B) adding a salt to ice
- (C) utilizing the cooling due to peltier effect
- (D) by cooling a liquid under reduced pressure
- 88. For the accurate measurement of small capacitance which of the following method is used?
  - (A) Schering bridge

- (B) Robinson's bridge
- (C) Desauchy's bridge
- (D) Wein's bridge
- **89.** A proportional counter filled with argon and a thin sheet of paraffin placed at one end of the chamber is used for the detection of :
  - (A) α particles
- (B) β particles
- (C) fast neutrons
- (D) γ rays
- **90.** The only liquid thermometer that can be used upto  $-190^{\circ}$ C is:
  - (A) Alcohol thermometer
  - (B) Mercury thermometer
  - (C) Liquid thermometer containing fractionally distilled petroleum
  - (D) Maximum and minimum thermometer
- **91.** F represents the resultant force acting on a system of particles. If F represents a conservative force, then, which of the following statements are correct?
  - (a) The work done by the force is independent of the path of the particle.
  - (b) Curl of  $\overrightarrow{F} = 0$
  - (c) Work done by the force over any closed path is infinite.
  - (A) (a) and (b)
- (B) (b) and (c)
- (C) (a) and (c)
- (D) (a), (b) and (c)



For a canonical transformation from (q, p) to (Q, P), one of the transformation equations is 92.  $q = (e^Q - 1)^2 \sec^2 p$ . The generating function F(P, Q) is given by :

(iv)

- (A)  $F(P, Q) = (e^Q 1)^2 \sec^2 p$
- (B)  $F(P, Q) = -(e^Q 1)^2 \sec^2 p$
- $F(P, Q) = -(e^{Q} 1)^{2} \tan p$
- (D)  $F(P, Q) = (e^{Q} 1)^2 \tan p$

- 93. Match the following:
  - Euler's equations (a)
  - Generating function (b)
  - Hamiltonian (c)
  - (d) Minkowski space

- (i) Total energy (ii)

Four vectors

Canonical transformation (iii) Rigid body dynamics

- Codes:
  - (d) (a) (b) (c)
- (A) (ii) (iii) (iv) (i)
- (B) (iii) (iv) (i) (ii)
- (C) (iv) (i) (iii) (ii)
- (D) (iii) (iv) (ii) (i)
- F is an arbitrary function of the variables  $q_1, q_2, \dots, q_n, p_1, p_2, \dots, p_n$ . The poisson bracket 94. of qk with F is given by:

- (A)  $[q_{k'}, F] = 0$  (B)  $[q_{k'}, F] = 1$  (C)  $[q_{k'}, F] = -1$  (D)  $[q_{k'}, F] = \frac{\partial F}{\partial P_k}$
- A rigid body is rotating about a fixed point O, with angular velocity  $\overrightarrow{\omega}$ .  $\theta$ ,  $\phi$  and  $\psi$  represent 95. the Euler angles through which the coordinate axes rotate. Now, the component of  $\vec{\omega}$  along z-axis is given by:
  - (A)  $\omega_z = \dot{\theta} \sin \psi \dot{\phi} \sin \theta \cos \psi$
- (B)  $\omega_z = \dot{\theta} \sin \psi + \dot{\phi} \cos \psi$

(C)  $\omega_2 = \dot{\phi} \cos\theta + \dot{\psi}$ 

(D)  $\omega_2 = \dot{\phi} + \dot{\theta} + \dot{\psi}$ 

- Match the following: 96.
  - Matter waves (a)
- (i) Heisenberg-v
- Wave equation (b)
- (ii) Real eigenvalue.
- Uncertainty principle (c)
- (iii) De Broglie - •
- Hermitian operator (d)
- (iv) Schrodinger .y

- Codes:
  - (d) (a) (b) (c)
- (iv) (i) (ii) (A) (iii)
- (ii) (i) (iii) (B) (iv)
- (iv) (i) (C) (ii) (iii)
- (ii) (D) (iv) (iii) (i)



- For a square well represented by V(x)=0 if |x|< a and  $V(x)=\infty$ , if  $|x|\ge a$ , the wave function is given by  $\psi(x) = A\cos\left(\frac{n\pi x}{2a}\right)$ . The value of constant A by the normalization of wave function is:

- (A)  $A = \frac{1}{\sqrt{a}}$  (B)  $A = \frac{2}{\sqrt{a}}$  (C)  $A = \frac{\sqrt{a}}{2}$  (D)  $A = \frac{1}{\sqrt{2a}}$
- Which of the following statements are correct? 98.
  - The zero point energy of a linear harmonic oscillator arises as a consequence of uncertainty principle.
  - The Eigenvalues of a Hermitian operator are complex or real. (ii)
  - Ket vector is used to represent a wave function.
  - (A) (i) and (ii) are correct
- (ii) and (iii) are correct
- (C) (i) and (iii) are correct
- (D) (i), (ii) and (iii) are correct
- For a spin =  $\frac{1}{2}$  system like an electron, the Pauli matrices, which are used to represent the spin matrices, are

$$\sigma_{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
;  $\sigma_{y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$  and  $\sigma_{z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ 

Then, which of the following statements are correct?

- (a)  $\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = 0$
- (b)  $\sigma_x \sigma_y = i \sigma_z$
- (c)  $\sigma_x \sigma_y = \sigma_y \sigma_x = 0$
- (A) (b) only is correct
- (B) (c) only is correct
- (a) and (b) are correct
- (D) (b) and (c) are correct
- 100. In the ground state of hydrogen atom, an electron exists in 1s state. When it is given a photon of sufficient energy, which of the following dipole transitions are possible?
  - (a)  $1s \rightarrow 2s$
  - (b)  $1s \rightarrow 2p$
  - (c)  $1s \rightarrow 3s$
  - (A) (a) and (b)
- (B) (b) and (c)
- (C) (b) only
- (D) (a) only
- 101. The strongest IR absorption band of CO molecule occurs at  $4.9 \times 10^{13}$  Hz. If the reduced mass of CO is  $1.385 \times 10^{-26}$  kg, then the approximate zero point energy is :
- (C) 2.2 eV
- (D) 1.0 eV



- If C is a complex number, the conjugate of C  $\mid \psi >$  is C\* <  $\psi \mid$ **102**. (a)
  - The norm of the vector is denoted by  $<\psi\mid\psi>$ (b)
  - If an operator  $\hat{A}$  is such that  $\langle \phi | \hat{A} | \psi \rangle = \langle \psi | \hat{A} | \phi \rangle^*$  for all  $| \phi \rangle$ ,  $| \psi \rangle$ , then  $\hat{A}$ (c) is a self - adjoint operator
  - If  $|\psi\rangle$  is any vector and  $\langle \phi|$  is the conjugate of some vector  $|\phi\rangle$ , then (d)  $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle$

The correct statements are :

(A) (a), (b) and (c)

1

(B) (b), (c) and (d)

(C) (a), (c) and (d)

- (D) (a), (b), (c) and (d)
- 103. A conducting sphere of radius 'R' carries a charge q. The energy stored in the spherical cell of radius 'r' (r > R ) which surrounds the sphere is:
  - (A)  $\frac{q^2}{8\pi\epsilon_0 R}$  (B)  $\frac{q^2}{8\pi\epsilon_0 r}$  (C)  $\frac{q^2}{4\pi\epsilon_0 R}$  (D)  $\frac{q^2}{4\pi\epsilon_0 r}$

- 104. A monochromatic plane polarized electromagnetic wave is travelling eastward. The wave is polarized with electric field 'E' directed vertically up and down alternately. Amplitude of the electric field strength is 0.05 V/m and frequency is 6 MHz. The equation of magnetic field is:
  - $B = 0.05 \sin(3.77 \times 10^6 t 0.126 x) \vec{k}$ (A)
  - $B = 1.67 \times 10^{-10} \sin (3.77 \times 10^6 t + 0.126 x)$
  - (C)  $B = 1.67 \times 10^{-10} \sin (3.77 \times 10^6 \text{ t} 0.126 \text{ x}) \overrightarrow{k}$
  - (D)  $B = 1.67 \times 10^{-8} \sin (3.77 \times 10^6 t + 0.126 x) \overrightarrow{k}$
- 105. A spherically symmetric charge distribution is given by

 $\rho(r) = \rho_0 \left(1 - \frac{r^2}{r^2}\right)$  for  $0 \le r \le a$  then the total charge is :

- (A)  $\frac{8}{15} \pi a^3 \rho_0$  (B)  $\frac{4}{7} \pi a^3 \rho_0$  (C)  $8 \pi a^3 \rho_0$
- (D)  $4 \pi a^3 \rho_0$

- 106. The basic instrumentation amplifier is essentially:
  - (A) an adder circuit preceded by two buffer amplifier
  - an averager preceded by two buffer amplifier (B)
  - a substractor preceded by two buffer amplifier (C)
  - an absolute value circuit preceded by two buffer amplifier



| 107. | An A        | ADC has a total of the should be allow                          | onvers         | sion time of<br>contain :       | 200 p    | ıs. Wł    | nat is the highes                                                  | st freque  | ncy that its                      | s analog             |
|------|-------------|-----------------------------------------------------------------|----------------|---------------------------------|----------|-----------|--------------------------------------------------------------------|------------|-----------------------------------|----------------------|
|      | (A)         | 2.5 kHz                                                         | (B)            | 2.5 Hz                          |          | (C)       | 2 kHz                                                              | (D)        | 50 kHz                            |                      |
| 108. | In ho       | ot cathode gauge                                                | 2,             | mea                             | sures    | the p     | ressure of a ga                                                    | s.         |                                   |                      |
|      | (A)         |                                                                 |                |                                 |          | (C)       | Resistance                                                         | (D)        | e.m.f.                            |                      |
| 109. | Spec<br>to: | tra of monoeners                                                | getic X        | - rays ofter                    | show     | v two     | peaks in propo                                                     | rtional c  | ounter. Th                        | is is due            |
|      | (A)         | Escape of fluor                                                 | escent         | radiation                       | (B)      |           | er electron                                                        |            |                                   |                      |
|      | (C)         | Compton scatte                                                  | ering          |                                 | (D)      | Pho       | toelectric effect                                                  |            |                                   |                      |
| 110. | (A)<br>(B)  | light emission in<br>Level of deloca<br>Vibrational lev         | lized e<br>els |                                 | ors is ( | causeo    | d by transitions                                                   | between    | n:                                |                      |
|      |             | Rotational leve                                                 |                | !1 1errele                      |          |           |                                                                    |            |                                   |                      |
|      | (D)         | Vibrational and                                                 | rotat          | ional levels                    |          |           |                                                                    |            |                                   |                      |
| 111. | For         | a vector potentia                                               | ıl A, t        | he diverger                     | ice of   | →<br>A is | $\nabla\!\cdot\!\overset{\rightarrow}{A}=\frac{-\mu_0Q}{4\pi r_2}$ | where      | Q is a cor                        | nstant of            |
|      |             | opriate dimensiontz gauge invari                                |                |                                 | ding s   | scalar    | potential φ ( r                                                    | , t), that | makes A                           | and $\phi$           |
|      |             |                                                                 |                |                                 |          |           | Ot                                                                 |            | 0                                 |                      |
|      | (A)         | $\frac{Q}{4 \pi \epsilon_0 r}$                                  | (B)            | $\frac{Qt}{4 \pi \epsilon_0 r}$ |          | (C)       | $\frac{\mathcal{L}}{4 \pi \epsilon_0 r^2}$                         | (D)        | $\frac{2}{4 \pi \epsilon_0 r^2}$  |                      |
|      |             |                                                                 |                |                                 |          |           |                                                                    |            |                                   |                      |
| 112. |             | ch is a correct st                                              | atemei         | nt                              | ican     | aacros    | conic naramete                                                     | r which    | docaribos                         | evetem               |
|      | (A)         | An extensive va<br>in equilibrium<br>system                     | and w          | hich has a v                    | alue e   | equal     | to the sum of it                                                   | s values   | in each pa                        | rt of the            |
|      | (B)         | The intensive v                                                 | ariable        | e depends ir                    | n the 1  | mass (    | or the size of th                                                  | e substa   | nce                               |                      |
|      | (C)         | Example for in                                                  | tensive        | variable is                     | entro    | ру        |                                                                    |            |                                   |                      |
|      | (D)         | Example for ex                                                  | tensive        | e variable is                   | press    | ure       |                                                                    |            |                                   |                      |
| 113. | tomi        | anufacturer deve<br>peratures 2100 K<br>iency of an engi<br>40% | and 7          | 00 K. The p                     | ercen    | tage c    | of this efficiency                                                 | if the i   | rating betw<br>maximum<br><br>45% | veen the<br>possible |



|      |               | deal gas at 27°C l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a nrai                    | sure of     | 760 n           | nm of        | Hg. Th               | e gas is            | compr  | esseu Bouleri    | runy   |
|------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------|-----------------|--------------|----------------------|---------------------|--------|------------------|--------|
| 114. | An id         | deal gas at 27°C l<br>its volume is halv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ved. The                  | resultan    | t press         | sure o       | f the gas            | become              | (D)    | 1520 mm of       | Ησ     |
|      | (A)           | its volume is halv<br>380 mm of Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (B) 760                   | ) mm of     | Hg              | (C)          | 1140 m               | m of Fig            | (D)    |                  | -0     |
|      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |                 |              |                      |                     |        |                  |        |
| 115. | The 1         | momentum of a p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hoton ga                  | s of ene    | rgy 3 ]         | is ab        | out:                 | 1                   |        |                  |        |
|      | (A)           | $1 \times 10^{8} \text{ kg ms}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |             | (B)             | IXI          | י אַע ט              | ms <sup>-1</sup>    |        |                  |        |
|      |               | $9 \times 10^8 \text{ kg ms}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 5.          | (D)             | 9×1          | 0 <sup>-8</sup> kg 1 | ms <sup>-1</sup>    |        | 9                |        |
|      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             |                 |              |                      |                     |        | 6.1              | 1      |
| 116. | Whe           | n a beam of cosm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ic ray par                | rticles w   | as stu          | died i       | n a labo             | ratory, th          | e ene  | rgy of the part  | ticles |
|      | was           | n a beam of cosm<br>found to be 870 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MeV and i                 | its mom     | entum           | was          | 720 MeV              | //C. The            | rest n | hass of the par  | LICIC  |
|      | <b>1S</b> :   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                         |             |                 |              |                      |                     |        |                  |        |
|      |               | $m_0 = 488.4 \text{ MeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |             | 100             |              | 488.4 M              |                     |        |                  |        |
|      | (C)           | $m_0 = 48.84 \text{ MeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /C <sup>2</sup>           |             | (D)             | $m_0 =$      | 48.84 M              | iev/C               |        |                  |        |
| 117  | Inc.          | hi Idaniita ( D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                         | alcat       |                 |              |                      |                     |        |                  | P      |
| 117. |               | bi Identity for Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |             |                 |              |                      |                     |        |                  |        |
|      |               | [X, [Y, H]] + [Y, Y]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |             |                 |              |                      |                     |        |                  |        |
|      |               | [X, [Y, H]] + [Y,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |             |                 |              | A)                   |                     |        |                  |        |
|      | 18 A.         | [X, [Y, H]] - [Y,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |             |                 |              |                      |                     |        |                  |        |
|      | (0)           | [X, [Y, H]] - [Y,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [11, 7]] -                | [^, [ I , / | \]]=0           |              |                      |                     |        |                  |        |
| 118. | Like          | classical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , relativ                 | vistic .    |                 | ale          | O represe            | ente the to         | tal on | over of the      | L      |
|      |               | Lagrangian, Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |             | (B)             |              |                      | Lagrang             |        | ergy or the syst | tem.   |
|      | (C)           | Lagrangian, Ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |             | (D)             |              |                      | Hamilto             |        |                  |        |
|      | · .           | 5, 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 5           | (-)             |              |                      | TIGHTHO             | iuaii  |                  |        |
| 119. | A ga          | amma photon is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | associated                | l with a    | De Bı           | oglie        | wave w               | hose was            | zelena | th is \ 1 !      | ant.   |
|      |               | 0, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |             |                 |              |                      |                     |        |                  |        |
|      | (A)           | 1.99 × 10 <sup>-15</sup> J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (B) 1.9                   | 99×10-      | <sup>17</sup> J | (C)          | $1.99 \times 1$      | 0 <sup>-15</sup> eV | (D)    | 1.99×10-17       | eV     |
|      | Note          | . Value of collect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ants                      |             |                 |              |                      |                     | . ,    | South & Aut. AV  | C V    |
|      |               | $h = 6.62 \times 10^{-34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Js                        |             |                 |              |                      |                     |        |                  |        |
|      |               | $C=3\times10^8 \text{ m/s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |             |                 |              |                      |                     |        |                  |        |
| 120  | T             | The same state of the same sta |                           | 400000      |                 |              |                      |                     |        |                  |        |
| 120. | ın a<br>If θ, | neutron - proton s<br>and θ <sub>C</sub> represent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | scattering<br>t the angle | , it is ass | sumed           | that t       | he mass              | of neutro           | n and  | proton           | 1      |
|      | resp          | and $\theta_{C}$ represent ectively, then the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | relation b                | etween      | them            | ın lal<br>is | oratory              | frame an            | d cen  | tre of mass fra  | me.    |

17 PY 13

(B)  $\theta_L = 2 \theta_C$ 



#### 121. Charge of deutron is:

- (A)  $-1.6 \times 10^{-19}$  coulomb
- $+1.6\times10^{-19}$  coulomb
- (C)  $-1.9 \times 10^{-31}$  coulomb
- $+1.9\times10^{-31}$  coulomb (D)
- 122. The spin and parity of 8C12 according to nuclear shell model is:
  - (A)  $(\frac{1}{2})^+$
- (B) 0+
- $(C) 0^{-}$
- (D) 6+

- 123. The negative feedback:
  - (A) reduces the gain

- (B) increases the gain
- (C) neither increases nor decreases
- (D) slightly increases the gain
- 124. In an op amp the ratio of differential mode gain to common mode gain is known as :
  - (A) Slew rate

(B) input offset voltage

(C) CMRR

- (D) Current gain
- 125. The aspect ratio of 4  $k\Omega$  diffused resistor with the sheet resistance of P type diffusion is  $200 \Omega/\text{sq is}$ :
  - (A) 1/4
- (B) 20/1
- (C) 1/20
- (D) 4/1
- 126. The relationship between frequency spread ( $\Delta \nu$ ) and wavelength spread ( $\Delta \lambda$ ) for a laser source is:
  - (A)  $\Delta \lambda = -\left(\frac{C}{v^2}\right) \Delta v$

(B)  $\Delta \lambda = \left(\frac{C}{\nu^2}\right) \Delta \nu$ 

(C)  $\Delta \lambda = \left(\frac{C}{v^3}\right) \Delta v$ 

- (D)  $\Delta \lambda = \left(\frac{C^2}{L}\right) \Delta \nu$
- 127. In rotation vibration (IR) spectra of diatomic molecules, the lines corresponding to  $\Delta J = -1$ is called:
  - (A) Q branch
- R branch (B)
- (C) P branch
- (D) S branch
- 28. In pure rotational Raman spectrum of HCl, the displacement from the exciting line is  $\Delta \nu = \pm (62.4 + 41.6 \text{ J}) \text{ cm}^{-1}$ . Given the planck's constant  $= 6.62 \times 10^{-27} \text{ erg.sec}$  and velocity of light in free space  $= 3 \times 10^{10} \text{ cm s}^{-1}$ , calculate the moment of inertia of the molecule.
  - (A)  $2.7 \times 10^{-40}$  g.cm<sup>2</sup>
- (B)  $9.6 \times 10^{-34} \text{ g.cm}^2$
- (C)  $8.4 \times 10^{-32}$  g.cm<sup>2</sup>
- (D)  $6.2 \times 10^{-38}$  g.cm<sup>2</sup>



- 129. Doppler broadening is proportional to \_\_\_\_\_\_ and inversely proportional to \_\_\_\_\_
  - absolute temperature, atomic weight (A)
  - square root of absolute temperature, square root of atomic weight (B)
  - square of absolute temperature, square root of atomic weight (C)
  - absolute temperature, wavelength of the source (D)
- 130. The Bragg angle corresponding to the first order reflection from (III) planes in a crystal 30° when x-rays of wavelength 1.75 Å are used, then the interatomic spacing is :
  - (A) 10.8 Å
- (B) 9.47 Å
- (C) 3.01 Å
- (D) 1.75 Å
- 131. If E is the macroscopic field and P is polarization, then according to Lorentz the local fie experienced by a dielectric material of cubic crystal structure is :

- (A)  $E \left(\frac{4\pi}{3}\right)P$  (B)  $\frac{E}{\left(\frac{4\pi}{3}\right)P}$  (C)  $\frac{\left(\frac{4\pi}{3}\right)P}{E}$  (D)  $E + \left(\frac{4\pi}{3}\right)P$
- 132. The primitive translation vectors of a two dimensional lattice are

$$a = 2 \hat{i}$$

$$b = \hat{i} + 2\hat{j}$$

The primitive translational vectors of its reciprocal lattice are:

(A) 
$$a^* = 2\hat{i} + \hat{j} ; b^* = 2\hat{j}$$

(B) 
$$a^* = \pi \hat{i} - \frac{\pi}{2} \hat{j} ; b^* = \pi \hat{j}$$

(C) 
$$a^* = \pi \hat{j} + \pi \hat{k}$$
;  $b^* = \pi \hat{i} + \frac{\pi}{2} \hat{j}$  (D)  $a^* = 2 \pi \hat{i}$ ;  $b^* = \frac{\pi}{2} \hat{j}$ 

(D) 
$$a^* = 2 \pi \hat{i} ; b^* = \frac{\pi}{2} \hat{j}$$

- 133. Calculate the magnitude of change in the magnetic moment of a circulating electron in a applied field of 2 tesla acting perpendicular to the plane of the orbit. Radius of the circula orbit =  $5.3 \times 10^{-11}$  m. Mass of electron =  $9.1 \times 10^{-31}$  kg.
  - (A)  $0.46 \times 10^{-19} \text{ Am}^2$
- (B)  $4.86 \times 10^{-6} \text{ Am}^2$
- (C)  $1.08 \times 10^{-11}$  Am<sup>2</sup>
- (D)  $3.95 \times 10^{-29} \text{ Am}^2$
- 134. In a Bain bridge mass spectrograph, singly ionised atoms of <sup>20</sup>Ne and <sup>22</sup>Ne pass into the deflection chamber with a velocity 10<sup>5</sup> m/s. They strike the photographic plate at two different (A)  $29.76 \times 10^{-2}$  m (B)  $32.74 \times 10^{-2}$  m (C)  $5.96 \times 10^{-2}$  m (D)  $2.98 \times 10^{-2}$  m

#### 135. Match the following:

|     | Column I                    |     | Column II                                               |  |  |  |  |  |  |
|-----|-----------------------------|-----|---------------------------------------------------------|--|--|--|--|--|--|
| (a) | Nuclear fusion              | (p) | Converts some matter into energy                        |  |  |  |  |  |  |
| (b) | Nuclear fission             | (q) | Generally possible for nuclei with low atomic number    |  |  |  |  |  |  |
| (c) | β - decay                   | (r) | Generally possible for nuclei with higher atomic number |  |  |  |  |  |  |
| (d) | Exothermic nuclear reaction | (s) | Essentially proceeds by weak nuclear forces             |  |  |  |  |  |  |

- (A) (a)  $\rightarrow$  (p), (q) (b)  $\rightarrow$  (p), (r) (c)  $\rightarrow$  (p), (s) (d)  $\rightarrow$  (p), (r)

- (B) (a)  $\rightarrow$  (p), (q) (b)  $\rightarrow$  (p), (r) (c)  $\rightarrow$  (q), (s) (d)  $\rightarrow$  (p), (r)

- (C) (a)  $\rightarrow$  (p), (q) (b)  $\rightarrow$  (p), (r) (c)  $\rightarrow$  (p), (s) (d)  $\rightarrow$  (p), (q)

- (D) (a)  $\rightarrow$  (p), (r) (b)  $\rightarrow$  (p), (q) (c)  $\rightarrow$  (p), (s) (d)  $\rightarrow$  (p), (r)

#### 136. A symmetrical tensor of rank 2 in n-dimensional space has at most:

- (A)  $\frac{n(n+1)}{2}$  independent components
- (B)  $\frac{n^2-n}{2}$  dependent components
- (C) n<sup>2</sup>-n independent components
- (D)  $\frac{n^2+n}{2}$  dependent components

### **137.** The value of $J_{\frac{1}{2}}$ is equal to:

- (A)  $\sqrt{\frac{\pi}{2x}}\cos x$  (B)  $\sqrt{\frac{2}{\pi x}}\sin x$  (C)  $\sqrt{\frac{2\pi}{x}}\sin x$
- (D)  $\sqrt{\frac{2\pi}{x}}\cos x$



# **138.** The value of $\int_{0}^{\frac{\pi}{2}} (\tan \theta)^{\frac{1}{2}} d\theta$ is:

(A) 
$$\frac{\sqrt{\pi}}{2}$$

(B) 
$$\frac{\boxed{3}}{4} \boxed{\frac{1}{4}}$$

$$(C) \quad \frac{\boxed{\frac{3}{4}} \boxed{\frac{3}{2}}}{2}$$

$$(D) \quad \frac{\left|\frac{3}{2}\right|\frac{1}{2}}{\sqrt{\pi}}$$

- **139.** If A is conjugate to B and C, then:
  - B and C are necessary conjugate with each other (A)
  - not conjugate with each other (B)
  - may or may not be conjugate with each other (C)
  - conjugate only if either B or C is identity element (D)
- 140. In the case of a motion of a rigid body, the distance between two particles of the body always remains fixed and does not change with time. if  $\overrightarrow{r_i}$  and  $\overrightarrow{r_j}$  represent the position vectors ith and jth particles, which of the following describes the constraint correctly?

(A) Holonomic constraint with 
$$\begin{vmatrix} \overrightarrow{r_i} - \overrightarrow{r_j} \end{vmatrix} = C_{ij}$$

1)

- Non holonomic constraint with  $\begin{vmatrix} \rightarrow \\ r_i r_j \end{vmatrix} \le C_{ij}$ (B)
- Non holonomic and scleronomous with  $\begin{vmatrix} \rightarrow \\ r_i r_j \end{vmatrix} \le C_{ij}$
- Holonomic and scleronomous with  $\begin{vmatrix} \rightarrow \\ r_i r_j \end{vmatrix} = C_{ij}$

#### **141.** Consider the following rivers:

Narmada (a)

(b) Brahmaputra

Godavari (c)

(d) Tapti

Which of the above is/are flowing into the Bay of Bengal?

- (a), (b) and (c) only
- (b) and (c) only (B)

(a) and (b) only (C)

(D) (a) and (c) only



3

| 142  | In a         | class of 45 studene. What is his           | ents, a<br>new r                   | boy is rank<br>ank from th | ed 20<br>ne end | o <sup>th</sup> . W | /hen  | two bo          | ys joir  | ned, his | ranl | k was dro  | pped  |  |
|------|--------------|--------------------------------------------|------------------------------------|----------------------------|-----------------|---------------------|-------|-----------------|----------|----------|------|------------|-------|--|
|      | (A)          | 25 <sup>th</sup>                           | (B)                                | 26 <sup>th</sup>           |                 | (C                  | ) 2   | 7 <sup>th</sup> |          | (D)      | 28   | th         |       |  |
|      |              |                                            |                                    |                            |                 |                     |       |                 |          |          |      |            |       |  |
| 143. | The j        | parliament can n<br>ies :                  | nake ai                            | ny law for w               | hole            | or any              | part  | of Indi         | a for ir | npleme   | ntin | g internat | ional |  |
|      | (A)          | with the conse                             | with the consent of all the states |                            |                 |                     |       |                 |          |          |      |            |       |  |
|      | <b>(</b> B)  | with the consent of the majority of states |                                    |                            |                 |                     |       |                 |          |          |      |            |       |  |
|      | (C)          | with the consent of the states concerned   |                                    |                            |                 |                     |       |                 |          |          |      |            |       |  |
|      | (D)          | ) without the consent of any state         |                                    |                            |                 |                     |       |                 |          |          |      |            |       |  |
|      |              |                                            |                                    |                            |                 |                     |       |                 |          |          |      |            |       |  |
| 144. | In w<br>draw | hich of the foll<br>on by horses ?         | owing                              | temple, th                 | e fror          | nt Ma               | ndaj  | pam is          | in the   | form (   | of a | huge cha   | riot  |  |
|      | (A)          | Patteswaram t                              | emple                              |                            |                 |                     |       |                 |          |          |      |            |       |  |
|      | (B)          | Darasuram ten                              | nple                               | 829                        |                 |                     |       |                 |          |          |      |            |       |  |
|      | .C)          | Thanjavur Brib                             | nadees                             | warar temp                 | le              |                     |       |                 |          |          |      |            |       |  |
|      | (D)          | Thiruvarur Thy                             | yagara                             | ja temple                  |                 |                     |       |                 |          |          |      |            |       |  |
| 45.  | Who<br>Cham  | won the gold npionship?                    | both i                             | n the 5,000                | and             | 10,00               | 00 m  | etres e         | vent i   | n 2017   | Asia | an Athlet  | tics  |  |
|      | (A)          | Lakshmanan                                 |                                    |                            | (B)             | Gop                 | i The | onkana          | 1        |          |      |            |       |  |
|      | (C)          | Jinson Johnson                             |                                    |                            | (D)             |                     |       | hopra           |          |          |      |            |       |  |
|      |              |                                            |                                    |                            |                 |                     |       |                 |          |          |      |            |       |  |
| 46.  | What         | temperature are                            | e Fahre                            | enheit and (               | Celsiu          | s equ               | al?   |                 |          |          |      |            |       |  |
|      | (A)          | -40°                                       | (B)                                | 574.59                     |                 | (C)                 | 40    |                 | (D)      | -574.    | 59   |            |       |  |
|      |              |                                            |                                    |                            |                 |                     |       |                 |          |          |      |            |       |  |
|      | First s      | state to fix minin                         | num ed                             | ducation qu                | alifica         | tion                | or co | operat          | ive bo   | dy poll  |      |            |       |  |
|      | (-1)         | Rajasthan                                  | (B)                                | West Benga                 | d               |                     | (C)   |                 | l Nadı   |          |      | Karnatak   |       |  |
| PM   | 13           |                                            |                                    |                            | 25              |                     |       |                 |          | (-       | -,   | varnatak   | a     |  |



148. Who wrote the novel - 'KavalKottam'?

(A) Vannadasan

(B) S. Venkatesan (C) Joe D Cruz

(D) Puviarasan

149. Article 21-A and the RTE Act came into effect:

(A) On 1st April 2010

(B) On 1st April 2009

(C) On 1st April 2017

(D) On 1st April 2005

150. Quit India Movement was launched in response to:

(A) Cabinet Mission plan

Cripps proposals (B)

Simon Commission Report

(D) Wavell plan

- 0 O o -