SAMEER Scientist C Syllabus 2021 PDF – Download Exam Pattern Here!!!!. Society for Applied Microwave Electronics Engineering & Research has uploaded the Syllabus and Exam Pattern for the Post of Scientist C & B. So, Candidates can download the SAMEER Scientist Exam Pattern & Syllabus 2021 PDF in our blog & Start your Preparation now. Stay Connected with us for further updates
SAMEER Syllabus 2021:
Name of the Board |
Society for Applied Microwave Electronics Engineering & Research |
Name of the Post |
Scientist C & B |
Exam Date |
Announce Soon |
Status |
Syllabus Available |
SAMEER Scientist Exam Pattern 2021:
Subject Name | Duration | Type |
Electronics & Communication Engineering |
3 Hours |
Objective Type |
Physics | ||
Atmospheric Sciences |
Latest Government Job Notification 2021
SAMEER Scientist Exam Syllabus 2021:
Electronics & Communication Engineering:
Section 1: Engineering Mathematics
Linear Algebra: Vector space, basis, linear dependence and independence, matrix algebra, eigenvalues and eigen vectors, rank, solution of linear equations – existence and uniqueness.
Calculus: Mean value theorems, theorems of integral calculus, evaluation of definite and improper integrals, partial derivatives, maxima and minima, multiple integrals, line, surface and volume integrals, Taylor series.
Differential Equations: First order equations (linear and nonlinear), higher order linear differential equations, Cauchy’s and Euler’s equations, methods of solution using variation of parameters, complementary function and particular integral, partial differential equations, variable separable method, initial and boundary value problems.
Vector Analysis: Vectors in plane and space, vector operations, gradient, divergence and curl, Gauss’s, Green’s and Stoke’s theorems.
Complex Analysis: Analytic functions, Cauchy’s integral theorem, Cauchy’s integral formula; Taylor’s and Laurent’s series, residue theorem.
Numerical Methods: Solution of nonlinear equations, single and multi-step methods for differential equations, convergence criteria.
Probability and Statistics: Mean, median, mode and standard deviation; combinatorial probability, probability distribution functions – binomial, Poisson, exponential and normal; Joint and conditional probability; Correlation and regression analysis.
Section 2: Networks, Signals and Systems
Network solution methods: nodal and mesh analysis; Network theorems: superposition, Thevenin and Norton’s, maximum power transfer; Wye‐Delta transformation; Steady state sinusoidal analysis using phasors; Time domain analysis of simple linear circuits; Solution of network equations using Laplace transform; Frequency domain analysis of RLC circuits;
Linear 2‐port network parameters: driving point and transfer functions; State equations for networks.
Continuous-time signals: Fourier series and Fourier transform representations, sampling theorem and applications; Discrete-time signals: discrete-time Fourier transform (DTFT), DFT, FFT, Z-transform, interpolation of discrete-time signals; LTI systems: definition and properties, causality, stability, impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay, digital filter design techniques.
Section 3: Electronic Devices
Energy bands in intrinsic and extrinsic silicon; Carrier transport: diffusion current, drift current, mobility and resistivity; Generation and recombination of carriers; Poisson and continuity equations; P-N junction, Zener diode, BJT, MOS capacitor, MOSFET, LED, photo diode and solar cell; Integrated circuit fabrication process: oxidation, diffusion, ion implantation, photolithography and twin-tub CMOS process.
Section 4: Analog Circuits
Small signal equivalent circuits of diodes, BJTs and MOSFETs; Simple diode circuits: clipping, clamping and rectifiers; Single-stage BJT and MOSFET amplifiers: biasing, bias stability, mid- frequency small signal analysis and frequency response; BJT and MOSFET amplifiers: multi-stage, differential, feedback, power and operational; Simple op-amp circuits; Active filters; Sinusoidal oscillators: criterion for oscillation, single-transistor and op- amp configurations; Function generators, wave-shaping circuits and 555 timers; Voltage reference circuits; Power supplies: ripple removal and regulation.
Section 5: Digital Circuits
Number systems; Combinatorial circuits: Boolean algebra, minimization of functions using Boolean identities and Karnaugh map, logic gates and their static CMOS implementations, arithmetic circuits, code converters, multiplexers, decoders and PLAs; Sequential circuits: latches and flip‐flops, counters, shift‐registers and finite state machines; Data converters: sample and hold circuits, ADCs and DACs; Semiconductor memories: ROM, SRAM, DRAM; 8-bit microprocessor (8085): architecture, programming, memory and I/O interfacing.
Section 6: Control Systems
Basic control system components; Feedback principle; Transfer function; Block diagram representation; Signal flow graph; Transient and steady-state analysis of LTI systems; Frequency response; Routh- Hurwitz and Nyquist stability criteria; Bode and root-locus plots; Lag, lead and lag-lead compensation; State variable model and solution of state equation of LTI systems.
Section 7: Communications
Random processes: autocorrelation and power spectral density, properties of white noise, filtering of random signals through LTI systems; Analog communications: amplitude modulation and demodulation, angle modulation and demodulation, spectra of AM and FM, superheterodyne receivers, circuits for analog communications; Information theory: entropy, mutual information and channel capacity theorem; Digital communications: PCM, DPCM, digital modulation schemes, amplitude, phase and frequency shift keying (ASK, PSK, FSK), QAM, MAP and ML decoding, matched filter receiver, calculation of bandwidth, SNR and BER for digital modulation; Fundamentals of error correction, Hamming codes; Timing and frequency synchronization, inter-symbol interference and its mitigation; Basics of TDMA, FDMA and CDMA.
Section 8: Electromagnetics
Electrostatics; Maxwell’s equations: differential and integral forms and their interpretation, boundary conditions, wave equation, Poynting vector; Plane waves and properties: reflection and refraction, polarization, phase and group velocity, propagation through various media, skin depth; Transmission lines: equations, characteristic impedance, impedance matching, impedance transformation, S- parameters, Smith chart; Waveguides: modes, boundary conditions, cut-off frequencies, dispersion relations; Antennas: antenna types, radiation pattern, gain and directivity, return loss, antenna arrays; Basics of radar; Light propagation in optical fibers.
Latest Graduate Job Notification 2021
Physics:
Section 1: Mathematical Physics
Linear vector space: basis, orthogonality and completeness; matrices; vector calculus; linear differential equations; elements of complex analysis: Cauchy- Riemann conditions, Cauchy’s theorems, singularities, residue theorem and applications; Laplace transforms, Fourier analysis; elementary ideas about tensors: covariant and contravariant tensor, Levi-Civita and Christoffel symbols.
Section 2: Classical Mechanics
D’Alembert’s principle, cyclic coordinates, variational principle, Lagrange’s equation of motion, central force and scattering problems, rigid body motion; small oscillations, Hamilton’s formalisms; Poisson bracket; special theory of relativity: Lorentz transformations, relativistic kinematics, mass‐energy equivalence.
Section 3: Electromagnetic Theory
Solutions of electrostatic and magnetostatic problems including boundary value problems; dielectrics and conductors; Maxwell’s equations; scalar and vector potentials; Coulomb and Lorentz gauges; Electromagnetic waves and their reflection, refraction, interference, diffraction and polarization; Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; radiation from a moving charge.
Section 4: Quantum Mechanics
Postulates of quantum mechanics; uncertainty principle; Schrodinger equation; one-, two- and three- dimensional potential problems; particle in a box, transmission through one dimensional potential barriers, harmonic oscillator, hydrogen atom; linear vectors and operators in Hilbert space; angular momentum and spin; addition of angular momenta; time independent perturbation theory; elementary scattering theory.
Section 5: Thermodynamics and Statistical Physics
Laws of thermodynamics; macrostates and microstates; phase space; ensembles; partition function, free energy, calculation of thermodynamic quantities; classical and quantum statistics; degenerate Fermi gas; black body radiation and Planck’s distribution law; Bose‐Einstein condensation; first and second order phase transitions, phase equilibria, criticalpoint.
Section 6: Atomic and Molecular Physics
Spectra of one‐ and many‐electron atoms; LS and jj coupling; hyperfine structure; Zeeman and Stark effects; electric dipole transitions and selection rules; rotational and vibrational spectra of diatomic molecules; electronic transition in diatomic molecules, Franck‐Condon principle; Raman effect; NMR, ESR, X-ray spectra; lasers: Einstein coefficients, population inversion, two and three level systems.
Section 7: Solid State Physics & Electronics
Elements of crystallography; diffraction methods for structure determination; bonding in solids; lattice vibrations and thermal properties of solids; free electron theory; band theory of solids: nearly free electron and tight binding models; metals, semiconductors and insulators; conductivity, mobility and effective mass; optical, dielectric and magnetic properties of solids; elements of superconductivity: Type-I and Type II superconductors, Meissner effect, London equation. Semiconductor devices: diodes, Bipolar Junction Transistors, Field Effect Transistors; operational amplifiers: negative feedback circuits, active filters and oscillators; regulated power supplies; basic digital logic circuits, sequential circuits, flip‐flops, counters, registers, A/D and D/A conversion.
Section 8: Nuclear and Particle Physics
Nuclear radii and charge distributions, nuclear binding energy, Electric and magnetic moments; nuclear models, liquid drop model: semi‐empirical mass formula, Fermi gas model of nucleus, nuclear shell model; nuclear force and two nucleon problem; alpha decay, beta‐decay, electromagnetic transitions in nuclei; Rutherford scattering, nuclear reactions, conservation laws; fission and fusion; particle accelerators and detectors; elementary particles, photons, baryons, mesons and leptons; quark model.
Atmospheric Sciences:
Section A: Atmospheric Science
Fundamental of Meteorology, Thermal structure of the atmosphere and its composition, Radiation Balance and Laws, Wind Belts, Monsoon, Climate. Atmospheric Thermodynamics. Hydrostatic equilibrium and: Hydrostatic equation, variation of pressure with height, geopotential, Tropical convection. Atmospheric Electricity. Cloud Physics. Observation Techniques of the Atmosepheric Properties.
Fundamental equations. Pressure, gravity, centripetal and Corolis forces, continuity equation in Cartesian and isobaric coordinates, Scale analysis, inertial flow, geostrophic and gradient winds, thermal wind, vorticity. Atmospheric turbulence, baroclinic instabiltiy. Atmosphreric Waves.
Tropical meteorology: Trade wind inversion, ITCZ; monsoon trough tropical cyclones, their structure and development theory; monsoon depressions; Climate variability and forcings; Madden-Julian oscillation (MJO), ENSO, QBO (quasi-biennial oscillation) and sunspot cycles. Primitive equations of Numerical Weather Prediction. General Circulation and Climate Modelling.
Synoptic weather forecasting, prediction of weather elements such as rain, maximum and minimum temperature and fog. Data Assimilation.
Section B: Ocean Sciences
Seawater Properties, T-S diagrams, Ocean Observations, Ocean Tide and Waves and their properties. Coastal processes and Estuary Dynamics. coastal zone management. Wind Driven Circulation: Ekman, Sverdrup, Stommel and Munk theories, Inertial currents; geostrophic motion; barotropic and baroclinic conditions; Oceanic eddies. Global conveyor belt circulation. Subtropical gyres; Western boundary currents; equatorial current systems; Current System in the Indian Ocean.
Momentum equation, mass conservation, vorticity. Ocean and Wave Modeling, Ocean State Forecasting. Data Assimilation. Ocean Turbulence.
Chemical Property of seawater, major and minor elements, their behavior and chemical exchanges across interfaces and residence times in seawater, Element chemistry in atypical conditions-estuaries, Biochemical cycling of nutrients, trace metals and organic matter. Air-sea exchange of important biogenic dissolved gases; carbon dioxide-carbonate system; alkalinity and control of pH; biological pump. Marine Pollution. Primary and secondary production; factors controlling phytoplankton and zooplankton abundance and diversity; nekton and fisheries oceanography.
SAMEER Scientist Exam Atmospheric Science Syllabus 2021 PDF
SAMEER Scientist Exam Electronics and Communication Engineering Syllabus 2021 PDF
SAMEER Scientist Exam Physics Syllabus 2021 PDF
To Follow Our Instagram | Click Here |
To Follow Our Twitter | Click Here |
To Join Whatsapp | Click Here |
To Join Telegram Channel | Click Here |
To Join Our Facebook | Click Here |
The SAMEER Scientist Exam Date 2021 will be Announce Soon
The direct link to download SAMEER Scientist Syllabus 2021 have provided above
The Time Duration for this Examination is 3 Hours